A New Non-radioactive Method for IL-2 Bioassay

KyuBum Kwack* and Richard G. Lynch1,2

Immunomodulation Research Center, University of Ulsan, Ulsan 680-749, Korea;
1 Department of Microbiology College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
2 Department of Pathology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.

(Received on December 31, 1999)

An oxidation-reduction (redox) indicator, alamarBlue, was used to measure the bioactivity of interleukin 2 (IL-2). This assay system has several advantages over other bioassays for measuring IL-2. It is a nonradioactive method unlike the conventional tritium-labeled thymidine (3H-Tdr) incorporation assay. The alamarBlue assay is also easier to use than other colorimetric methods, such as the MTT assay, because the alamarBlue assay does not depend on the extraction of insoluble formazan salt, which is time-consuming, error-prone, and cumbersome. Due to its solubility in culture medium and its nontoxicity to cells, alamarBlue provides an easy method to monitor cellular growth using either a fluorescence- or an absorbance-based instrument. The alamarBlue assay is not sample-destructive, unlike the thymidine incorporation and MTT methods. This adds another advantage to the alamarBlue method as the measurement of cellular growth by sample-destructive methods requires as many tubes as time points whereas the alamarBlue method requires only one tube for the entire growth period. In this study, alamarBlue was used to measure the proliferation of the IL-2-dependent cytotoxic T cell line, CTLI-2. The colorimetric change of alamarBlue at 570 nm compared to the reference wavelength, 600 nm, was proportional to the number of viable cells. The sensitivity of the IL-2 assay using alamarBlue was comparable to that of the 3H-thymidine incorporation method. These results demonstrate that the alamarBlue assay is valid for the IL-2 bioassay and that alamarBlue can replace the 3H-thymidine employed in the conventional proliferation assays.

Keywords: Fluorescence/Colorimetric Assay; IL-2 Assay; Redox Indicator.

Introduction

Many cells require growth factors, which are not provided from media and sera. The growth of these cells is totally dependent on the availability of these supplemented factors. Therefore, proliferation of these cells has been used to measure the concentrations of those growth factors in the media. The CTLL-2 cell line was transformed from murine spleen cells, but remained dependent on exogenous growth factors such as human or murine IL-2 or murine IL-4. Bioassay protocols were developed utilizing this cell line to measure IL-2 and IL-4 in the culture medium (Bottomly et al., 1992). The proliferation of CTLL-2 cells was monitored by 3H-Tdr incorporation into the newly synthesized DNA. Although the 3H-Tdr incorporation assay has been proven to be reliable and is still widely used, it is laborious and necessitates disposal of the radioactive waste. To circumvent these problems, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was developed by Mosmann (1983).

In the MTT-mediated proliferation assay, the yellow tetrazolium salt, MTT, is converted to the purple formazan crystals by mitochondrial enzymes. The formazan products are then dissolved with acidic isopropanol. This solubilization is an error-prone, time-consuming, and dangerous step. Moreover, it is often difficult to completely dissolve the formazan crystals, which need various modifications of the assay (Buttke et al., 1993; Niks and Otto, 1990; Slawowski et al., 1993; Stevens and Olson, 1993; Tada et al., 1986). AlamaBlue is a fluorescence/colorimetric growth indicator that detects the metabolic activity of cells (Ansar Ahmed et al., 1994). Specifically, cellular growth leads to reduction of the culture medium which in turn changes the indicator from blue to red. This redox potential change is proportional to the cell viability, and can be used as a barometer of cellular proliferation.

* To whom correspondence should be addressed.
Tel: 82-52-259-2859; Fax: 82-52-259-1694
E-mail: kbkwack@uou.ulsan.ac.kr
In this study, we developed a new colorimetric IL-2 assay method using alamarBlue. AlamarBlue was found to be soluble in the culture medium and non-toxic to the cells tested. The optical density of alamarBlue was proportional to the number of cells, validating this new dye as a cellular proliferation indicator. The sensitivity of the alamarBlue assay was similar to that of the conventional [³H]Tdr incorporation method. Here we report that alamarBlue is a valuable tool for cell proliferation assays and may provide a simple method for bioassays of cytokines and growth factors.

Materials and Methods

Cell lines and culture conditions The murine cytotoxic T lymphoma cell line, CTLL-2, was purchased from ATCC (Rockville, MD). Cells were cultured in JCM medium containing RPMI 1640 supplemented with heat-inactivated 10% bovine calf serum (Hyclone, Logan, UT), 2 mM glutamine (Gibco BRL, Rockville, MD), 0.1 mM nonessential amino acids (Gibco BRL), 100 U/ml penicillin (Sigma, St. Louis, MI), 100 μg/ml streptomycin (Sigma), 0.1 mM pyruvate (Gibco BRL), 25 mM HEPES (Gibco BRL), and 5.5 × 10⁻³ M beta-mercaptoethanol (Sigma) at 37°C, 5% CO₂. The CTLL-2 cells were maintained in JCM medium supplemented with 20 U/ml of recombinant human IL-2 (Genzyme, Cambridge, MA). AlamarBlue was supplied by Alamar Biosciences, Inc. (Sacramento, CA).

The standard [³H]Tdr incorporation assay for IL-2 IL-2 activity was measured by DNA synthesis 24 h after addition of 1 μCi of [³H]Tdr (Amersham, Arlington Heights, IL) into each well of a 96-well plate (Bottomly et al., 1992). The IL-2 standard was 5-fold serially diluted in 50 μl of JCM medium in a 96-well microtiter plate. CTLL-2 cells were harvested in active log-phase growth and washed with PBS three times to remove residual IL-2. Cells were resuspended in JCM medium at 1 × 10⁶ cells/ml and added to a 96-well plate, which contained 50 μl of serially diluted IL-2 standard. The CTLL-2 cells were cultured for 24 h in a 37°C, 5% CO₂ humidified incubator. One μCi of [³H]Tdr was added into each well and incubated for an additional 24 h. The cultures were harvested on a cell harvester (Skatron Inc., Sterling, VA) and the amount of [³H]Tdr incorporated into DNA was measured by liquid scintillation counting (Beckman, Irvine, CA).

The IL-2 bioassay using alamarBlue The IL-2 standard was 5-fold serially diluted in 50 μl of JCM medium in a 96-well microtiter plate. CTLL-2 cells were harvested in active log-phase growth and washed with PBS three times to remove residual IL-2. The cells were resuspended in JCM medium at 4 × 10⁵ cells/ml and 50 μl were added to each well of a 96-well plate which contained 50 μl of serially diluted standard IL-2. The cells were cultured for 44 h in a 37°C, 5% CO₂ humidified incubator. Fifty μl of 30% (v/v) alamarBlue, which was diluted with JCM medium, was added to each well and further incubated for 4 h in a 37°C, 5% CO₂ humidified incubator. The plates were subsequently read on a Microplate Autoreader (Bio-Tek Instruments, Inc., Winooski, VT) at 570 nm (measurement) and 600 nm (reference). The specific absorbance values were calculated from the following equation; the specific OD₅₇₀₋₆₀₀ = sample OD₅₇₀₋₆₀₀ - media OD₅₇₀₋₆₀₀.

Statistical analysis Statistical analysis was performed with the student t test using the StatView software (Abacus Concepts, Inc., San Francisco, CA).

Results and Discussion

Assessment of toxicity of alamarBlue for CTLL-2 cells To determine whether alamarBlue is cytotoxic, proliferation of CTLL-2 cells in the presence of alamarBlue was monitored. The CTLL-2 cells were at a concentration of 4 × 10⁶ cells in 1 ml of JCM medium containing 30 U/ml IL-2, 10 μCi/ml of [³H]Tdr, and 0-20% (v/v) of alamarBlue. An aliquot of 100 μl of this cell suspension was added into each well of a 96-well plate and incubated in a 37°C, 5% CO₂ humidified incubator. Every 4 h the cultures were harvested on a cell harvester and the amount of [³H]Tdr incorporated into DNA was measured by liquid scintillation counting. AlamarBlue had very little effect on the growth of CTLL-2 cells (Fig. 1). The incorporation of [³H]Tdr by CTLL-2 cells in the presence of either 5% or 10% alamarBlue for up to 24 h, or 20% of alamarBlue for 4 h, was not significantly different from that of the control (without alamarBlue). Therefore, the presence of either 5% and 10% alamarBlue up to 24 h or 20% of alamarBlue for 4 h is non-toxic to CTLL-2 cells.

Fig. 1. The cytotoxicity of alamarBlue was evaluated. CTLL-2 cells were cultured with various concentrations of alamarBlue and 1 μCi/200 μl of [³H]Tdr for 4-24 h. The proliferation of cells was measured as [³H]Tdr incorporation. Average data without standard error bars from three independent experiments are presented. Incubation with 20% of alamarBlue reduced CTLL-2 cell growth significantly for more than 8 h (*).