A Combinatorial Identity Arising from Symplectic Geometry

Hao DING
School of Mathematical Sciences, Beijing Normal University,
Laboratory of Mathematics and Complex Systems, Ministry of Education,
Beijing 100875, P. R. China
E-mail: hao_ding@mail.bnu.edu.cn

Abstract In this note, we give a generalization of the famous combinational identity \((-1)^nn! = \sum_{k=1}^{n} \binom{n}{k}(-1)^kk^n\) arising from symplectic geometry.

Keywords Duistermaat–Heckman theorem, Hamiltonian S^1 action, Grassmann manifold, weight

MR(2000) Subject Classification 05A19, 53D20

1 Introduction and Main Result

In this note we shall give a generalization of following famous combinational identity due to Boole (see [1])
\((-1)^nn! = \sum_{k=1}^{n} \binom{n}{k}(-1)^kk^n\) \hspace{1cm} (1)

by using techniques from symplectic geometry. Namely, we shall prove

Theorem 1.1 Let \(n, k\) and \(m = n - k\) be positive integers. Then
\[(km)!4km(k-1)!(k-2)!\cdots1!(n-k-1)!\cdots2!1! \]
\[= (-1)^km \sum_{0 \leq r \leq k} \sum_{P} \frac{[m(k + n + 1) - k(k + 1) - 2C(n, k) - 4 \sum_{s=1}^{r} (j_s - i_s)(j_s - l_\alpha)(l_\alpha - i_t)(l_\alpha - l_\beta)]^{km}}{\prod_{i=1}^{r} \prod_{s=1}^{k-r} \prod_{\beta=0}^{k-r+1} (j_s - i_t)(j_s - l_\beta)(l_\alpha - i_t)(l_\alpha - l_\beta)}, \] \hspace{1cm} (2)

where the subscript \(P\) in the second sum denotes all possible permutations \(1 \leq i_1 < i_2 < \cdots < i_r \leq k < k + 1 \leq j_1 < \cdots < j_r \leq n\) and their complements \(1 \leq l_1 < l_2 < \cdots < l_{k-r} \leq k < k + 1 \leq l_{k-r+1} < \cdots < l_{n-2r} \leq n\) in \(\{1, \ldots, n\}\) such that identity (24) is satisfied, and that \(C(n, k)\) is a constant determined by (19). It’s a convention that any product term in denominators of fractions on the right side of (2) is omitted directly while 0 appearing in its subscripts. As an example let us consider the case when \(r = k\). Then all terms having \(\alpha\) as subscripts are omitted. In other words, in this case only the terms \(j_s - i_t\) and \(j_s - l_\beta\) are retained in denominators.

Remark 1.2 In fact, the combinational identity (1) is a special case of Theorem 1.1 for \(k = 1\). We get
\[C(n, 1) = \frac{n(n + 1)}{2} \]
from (20), then identity (1) follows directly from an easy calculation.

Received March 18, 2008, Accepted October 31, 2008
Recall that identity (1) may be obtained from symplectic geometry, i.e., applying Duistermaat–Heckman theorem to the natural S^1 action on $\mathbb{C}P^n$, cf., [2]. Our generalization is obtained by applying Duistermaat–Heckman theorem to a suitable S^1 action on complex Grassmann manifolds. For the sake of completeness let us recall the precise content of the Duistermaat–Heckman theorem. A smooth vector field X on M is called a Hamiltonian vector field if each vector field $\xi \in \mathfrak{g}$ is a symplectic vector field on M, usually denoted by $\text{Symp}(M, \omega)$ or $\text{Symp}(M)$ for short, is an infinite-dimensional Lie group, cf., [3]. A smooth vector field X on M is called symplectic if $\iota_X \omega$ is closed. Moreover, if $\iota_X \omega$ is exact, then X is called Hamiltonian. All symplectic (resp. Hamiltonian) vector fields on M, denoted by $\chi_{\text{Symp}}(M, \omega)$ (resp. $\chi_{\text{Ham}}(M, \omega)$), form a $C^\infty(M)$-module space. It is easy to see that

$$\chi_{\text{Ham}}(M, \omega) \subset \chi_{\text{Symp}}(M, \omega) \subset \chi(M, \omega),$$

where $\chi(M, \omega)$ is the set of all smooth vector fields on M. Assume that M is closed. Then any smooth family of symplectic vector fields $\{X_t\}_{0 \leq t \leq 1}$ determines a flow of symplectomorphisms $\{\psi_t\}_{0 \leq t \leq 1}$ via equation $\frac{d}{dt} \psi_t = X_t \circ \psi_t$ with initial condition $\psi_0 = \text{id}$. Moreover, if all X_t are Hamiltonian, then there exists a smooth family of Hamiltonian functions $H_t : M \to \mathbb{R}$ such that

$$\iota_{X_t} \omega = dH_t$$

for every $t \in [0, 1]$. In this case H is called a time-dependent Hamiltonian function and $\{\psi_t\}_{0 \leq t \leq 1}$ is called a Hamiltonian isotropy on (M, ω). Every individual element ψ_t is called a Hamiltonian diffeomorphism.

Let G be a compact Lie group with Lie algebra $\mathfrak{g} = \text{Lie}(G)$ which acts on (M, ω) by symplectomorphisms. This means that there is a group homomorphism $\varphi : G \to \text{Symp}(M, \omega), g \mapsto \varphi_g$. In other words, $\varphi_g : M \to M$ is a symplectomorphism for every $g \in G$, and

$$\varphi_{gh} = \varphi_g \circ \varphi_h, \quad \varphi_e = \text{id},$$

for $g, h \in G$. Then infinitesimal action determines a homomorphism

$$\mathfrak{g} \to \chi(M, \omega), \xi \mapsto X_\xi \triangleq \left. \frac{d}{dt} \right|_{t=0} \varphi_{\exp(t\xi)}.$$

Since φ_g is a symplectomorphism for every $g \in G$ it follows that each X_ξ is a symplectic vector field. Moreover, G is called a weak Hamiltonian action on M if each vector field X_ξ is Hamiltonian. This means that for any $\xi \in \mathfrak{g}$ there is a corresponding Hamiltonian function H_ξ such that $\iota_\xi \omega = dH_\xi$. However, this function H_ξ is only determined up to a constant. Obviously, we can choose appropriate constants such that the mapping

$$\mathfrak{g} \to C^\infty(M), \quad \xi \mapsto H_\xi$$

is linear. The action G is called Hamiltonian if (3) is a Lie algebra homomorphism, that is,

$$H_{[\xi, \eta]} = \{H_\xi, H_\eta\}$$

for any $\xi, \eta \in \mathfrak{g}$.