Convex Mean Curvature Flow with a Forcing Term in Direction of the Position Vector

Guang Han LI
School of Mathematics and Computer Science,
Key Laboratory of Applied Mathematics of Hubei Province,
Hubei University, Wuhan 430062, P. R. China
E-mail: liguanghan@163.com

Jing MAO
Departamento de Matemática, Instituto Superior Técnico, Technical University of Lisbon,
Edifício Ciência, Piso 3, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
E-mail: jiner120@tom.com

Chuan Xi WU
Institute of Mathematics, Hubei University, Wuhan 430062, P. R. China
E-mail: cxwu@hubu.edu.cn

Abstract A smooth, compact and strictly convex hypersurface evolving in \mathbb{R}^{n+1} along its mean curvature vector plus a forcing term in the direction of its position vector is studied in this paper. We show that the convexity is preserving as the case of mean curvature flow, and the evolving convex hypersurfaces may shrink to a point in finite time if the forcing term is small, or exist for all time and expand to infinity if it is large enough. The flow can converge to a round sphere if the forcing term satisfies suitable conditions which will be given in the paper. Long-time existence and convergence of normalization of the flow are also investigated.

Keywords Evolution equation, mean curvature flow, forcing term, normalization

MR(2000) Subject Classification 53C40, 53C44, 35K55

1 Introduction

Let M_0 be a compact, strictly convex hypersurface of dimension $n \geq 2$, without boundary, smoothly embedded in \mathbb{R}^{n+1} and represented by some diffeomorphism $X_0 : \mathbb{R}^n \supset U \to X_0(U) \subset M_0 \subset \mathbb{R}^{n+1}$. The forced mean curvature flow is a smooth family of maps $X_t = X(\cdot, t)$ evolving according to

$$\begin{cases}
\frac{d}{dt} X(x, t) = (h(t) - H(x, t))v(x, t), & x \in M^n, \ t > 0, \\
X(\cdot, 0) = X_0,
\end{cases}$$

Received January 21, 2010, revised June 24, 2010, accepted August 24, 2010

The first and third authors are partially supported by National Natural Science Foundation of China (Grant No. 10971055), Funds for Disciplines Leaders of Wuhan (Grant No. Z201051730002) and Project of Hubei Provincial Department of Education (Grant No. T200901); the second author is supported by Fundação Ciência e Tecnologia (FCT) through a doctoral fellowship SFRH/BD/60313/2009
where H is the mean curvature of $M_t = X_t(M^n)$, and $h(t)$ is a continuous function, and $v(x,t)$ the outer unit normal vector of M_t at $X(x,t)$.

When $h(t)$ is non-negative, (1.1) is a contractive flow for h small, an expanding flow for h large enough, and (1.1) can converge to a round sphere for suitable h (cf. [1]). Specially, (1.1) is the well-known mean curvature flow for $h = 0$ [2]. When $h(t) = \int_{M_t} HE_{k+1} d\mu / \int_{M_t} E_{k+1} d\mu$, $k = -1, 0, 1, \ldots, n - 1$, where E_l is the l-th elementary symmetric function of the principal curvatures of M, (1.1) is the mixed volume preserving mean curvature flow [3], which includes the volume preserving case [4] and surfaces area preserving case [5]. For curvature flow with an external force field, we refer to [6, 7].

The main theorem we prove is

Theorem 1.1 Let M_0 be an n-dimensional smooth, compact and strictly convex hypersurface immersed in \mathbb{R}^{n+1} with $n \geq 2$. Then for any continuous function $\kappa(t)$, there exists a unique,