Non-differentiability of Alpha Function at the Boundary of Flat

Jian Lu ZHANG
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
E-mail: jellychung1987@gmail.com

Min ZHOU
School of Information Management, Nanjing University, Nanjing 210093, P. R. China
E-mail: minzhou@nju.edu.cn

Abstract With the variational method introduced by Mather, we construct a mechanical Hamiltonian system whose \(\alpha \) function has a flat \(\mathcal{F} \) and is non-differentiable at the boundary \(\partial \mathcal{F} \). In the case of two degrees of freedom, we prove that this phenomenon is stable under perturbations of Mañé’s.

Keywords Mather theory, \(\alpha \) function, mechanical systems

MR(2010) Subject Classification 37J40, 37J50

1 Introduction

Let \(M \) be a smooth closed manifold with \(TM \) as tangent bundle. We call such a function \(L(x, v) \in C^r(TM, \mathbb{R}) \) \(r \geq 2 \) Tonelli Lagrangian if it satisfies:

- **convexity:** For all \(x \in M, v \in T_x M \) the Hessian matrix \(\frac{\partial^2 L}{\partial v_i \partial v_j}(x, v) \) is positive definiteness;
- **superlinearity:** \(\lim_{\|v\| \to \infty} \frac{L(x, v)}{\|v\|} = \infty \) uniformly on \((x, v) \in TM \);
- **completeness:** All solutions of the corresponding Euler–Lagrangian equation are well-defined for \(t \in \mathbb{R} \), here the Euler–Lagrangian equation (E–L) is given by
 \[
 \frac{d}{dt} \frac{\partial L}{\partial v}(x, v) - \frac{\partial L}{\partial x}(x, v) = 0, \quad (x, v) \in TM. \tag{1.1}
 \]

Remark 1.1 In the autonomous case, the completeness is natural under the first two assumptions. That is because we can get the Hamiltonian via the Legendre Transformation

\[
H(x, v) = \frac{\partial L}{\partial v}(x, v) - L.
\]

From [5] we know that along each orbit \((\gamma, \dot{\gamma}) \) of Euler–Lagrangian equation \(H(\gamma, \dot{\gamma}) \) is constant. The superlinearity implies that every level-set of Hamiltonian is compact. This in turn assures the completeness of flow.

Usually, we take \(M = \mathbb{T}^n \). Substracting a closed 1-form \(\eta_c \) with the cohomology class \([\eta_c] = c \in H^1(M, \mathbb{R}) \), we get a new Tonelli Lagrangian \(L - \eta_c \) written by \(L - c \) for short.

Received March 5, 2013, accepted October 28, 2013
Supported by National Natural Science Foundation of China (Grant Nos. 11201222, 11171146), National Basic Research Program of China (973 Program, 2013CB834100) and a program PAPD of Jiangsu Province, China
From [7], we know that the E-L flow \((\gamma, \dot{\gamma})\) of \(L - \eta_c\) also satisfies the E-L equation of \(L\). So we can define a \(c\)-minimal curve \(\gamma \in C^1(\mathbb{R}, M)\) if it satisfies:

\[
\mathcal{K}_c(\gamma) = \min_{\xi(s) = \gamma(s)} \int_a^b (L - \eta_c)(\xi(t), \dot{\xi}(t))dt, \quad \forall a < b \in \mathbb{R}, \, \xi \in C^{ac}(\mathbb{R}, M).
\]

All of the \(c\)-minimal orbit \((\gamma, \dot{\gamma})\) form a set denoted by \(\tilde{G}(c)\), which is invariant under the Euler–Lagrangian flow \(\Phi^c\).

Let \(\mathcal{M}_{inv}\) be the set of \(\Phi^c\)-invariant probability measures on \(TM\). We define the \(\alpha\) function as follows:

\[
\alpha(c) = -\min_{\mu \in \mathcal{M}_{inv}} \int_{TM} (L - \eta_c)d\mu, \quad c \in H^1(M, \mathbb{R}).
\]

As is showed in [7], there exists at least one measure \(\mu_c\) such that the minimum attains. We call this measure \(\mu_c\) \(c\)-minimal measure. The union of the supports of all \(c\)-minimal measures is called Mather set, denoted by \(\tilde{\mathcal{M}}(c)\). We call the minimal value of \(\alpha\) function Mañé Critical Value.

Since we know that \(\alpha(c)\) is convex, finite everywhere and superlinear [7], we can define its conjugate function in the sense of convex analysis [8] as

\[
\beta(h) = \min_{\mu \in \mathcal{M}_{inv}} \int_{TM} Ld\mu, \quad h \in H_1(M, \mathbb{R}),
\]

here \(\rho(\mu)\) is defined via the De Rham inner product:

\[
\langle \rho(\mu), c \rangle = \int \eta_c d\mu.
\]

\(\beta(h)\) is also a convex, finite everywhere and superlinear function. From [6] and [10] we can get the following properties:

- If \(\mu\) is a \(c\)-minimizing measure, we have \(\rho(\mu) \in D^- \alpha(c)\).
- The maximal connected domain on which \(\alpha\) function is not strict convex is called a flat \(F\). \(\forall c, c' \in \text{int} F\) we have \(\tilde{\mathcal{M}}(c) = \tilde{\mathcal{M}}(c')\).
- For each non-differential point \(c\) of \(\alpha\) function, \(\tilde{\mathcal{M}}(c)\) corresponds to at least two ergodic components with different rotation vectors.
- If \(h\) is a strict convex point of \(\beta\) function, then there must exist one ergodic minimal measure \(\mu\) with \(\rho(\mu) = h\).

We also need to define another two sets called Aubry set \(\tilde{A}(c)\) and Mañé set \(\tilde{N}(c)\). First, we define

\[
h_c^t(x, y) = \min_{\gamma \in C^1([0, t]; M)} \int_0^t ((L - \eta_c)(\gamma(s), \dot{\gamma}(s)) + \alpha(c))ds,
\]

\[
\Phi_c(x, y) = \inf_{t \in \mathbb{R}} h_c^t(x, y),
\]

and

\[
h_c^\infty(x, y) = \lim_{t \to +\infty} h_c^t(x, y).
\]

We call a curve \(\gamma \in C^1(\mathbb{R}, M)\) \(c\)-semi-static if

\[
\Phi_c(\gamma(a), \gamma(b)) = \int_a^b ((L - \eta_c)(\gamma(t), \dot{\gamma}(t)) + \alpha(c))dt, \quad \forall a < b \in \mathbb{R},
\]