Hausdorff Measure of Homogeneous Cantor Set

Cheng Qin QU
Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China

Hui RAO
Department of Mathematics, Wuhan University, Wuhan 430072, P. R. China
E-mail: raohui@nlsc.whu.edu.cn

Wei Yi SU
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
E-mail: suqiu@netra.nju.edu.cn

Abstract This paper gives the Hausdorff measure of a class of homogeneous Cantor sets.

Keywords Homogeneous cantor set, Hausdorff measure, Convexity

1991MR Subject Classification 28A80

1 Introduction

The determination of the exact Hausdorff measure of a fractal set is a difficult and important problem in fractal geometry. In fact, up to now, only a few results about self-similar sets are known (middle-third Cantor set and its variation, some very special cases of Sierpinski carpets) [1-3]. In this paper we will determine the exact Hausdorff measure of a class of homogeneous Cantor sets by developing the techniques introduced by Mauldin and Williams [4].

Suppose $I = [0, 1]$, let $\{n_k\}_{k \geq 1}$ be a sequence of positive integers, and $\{c_k\}_{k \geq 1}$ be a real number sequence satisfying $n_k \geq 2, 0 < n_k c_k \leq 1 (k \geq 1)$. For any $k \geq 1$, let $D_k = \{(i_1, \ldots, i_k) : 1 \leq i_j \leq n_j, 1 \leq j \leq k\}, D = \bigcup_{k \geq 0} D_k$, where $D_0 = \emptyset$. If $\sigma = (\sigma_1, \ldots, \sigma_k) \in D_k$, $\tau = (\tau_1, \ldots, \tau_m) \in D_m$, let $\sigma \ast \tau = (\sigma_1, \ldots, \sigma_k, \tau_1, \ldots, \tau_m)$. Let $F = \{I_\sigma : \sigma \in D\}$ be the collection of the closed sub-intervals of I which satisfy

i) $I_\emptyset = I$;
For any \(k \geq 1 \) and \(\sigma \in D_{k-1} \), \(I_{\sigma+i} \) (\(1 \leq i \leq n_k \)) are sub-intervals of \(I_\sigma \). \(I_{\sigma+i}, \ldots, I_{\sigma+n_k} \) are arranged from the left to the right, \(I_{\sigma+1} \) and \(I_\sigma \) have the same left endpoint, \(I_{\sigma+n_k} \) and \(I_\sigma \) have the same right endpoint, and the lengths of the gaps between any two consecutive sub-intervals are equal. We denote the length of one of the gaps by \(y_k \).

For any \(k \geq 1 \) and \(\sigma \in D_{k-1} \), \(1 \leq j \leq n_k \), we have \(\frac{|I_{\sigma+j}|}{|I_\sigma|} = c_k \), where \(|A| \) denotes the diameter of \(A \).

Let \(E_k = \bigcup_{\sigma \in D_k} I_\sigma \), \(E = \bigcap_{k \geq 0} E_k \). We call \(E \) the homogeneous Cantor set [5,6] determined by \(\{n_k\}_{k \geq 1}, \{c_k\}_{k \geq 1} \) and call \(F_k = \{I_\sigma : \sigma \in D_k\} \) the \(k \)-order basic intervals of \(E \).

Feng, Rao and Wu [5] use the net measure method to determine the dimension of \(E \) and give the sufficient and necessary condition for the Hausdorff measure of \(E \) to be positive and finite.

Theorem A [5] \ Let \(E \) be the homogeneous Cantor set determined by \(\{n_k\}_{k \geq 1}, \{c_k\}_{k \geq 1} \). Then

1. Let \(s \) be the Hausdorff dimension of \(E \), then
 \[s = \liminf_{k \to \infty} \frac{\log n_1 \cdots n_k}{\log c_1 \cdots c_k}; \]

2. There exists a constant \(c \), such that
 \[c \liminf_{k \to \infty} \prod_{j=1}^{k} n_j c_j^s \leq \mathcal{H}^s(E) \leq \liminf_{k \to \infty} \prod_{j=1}^{k} n_j c_j^s, \]

where \(\mathcal{H}^s(E) \) is the \(s \)-dimensional Hausdorff measure of \(E \).

We determine the exact Hausdorff measure of a class of homogeneous Cantor sets. Our main result is

Theorem 1 \ Let \(E \) be the homogeneous Cantor set determined by \(\{n_k\}_{k \geq 1}, \{c_k\}_{k \geq 1} \). If \(y_{k+1} \leq y_k \) for all \(k \geq 1 \), then

\[\mathcal{H}^s(E) = \liminf_{k \to \infty} \prod_{j=1}^{k} n_j c_j^s, \]

(1.1)

where \(s \) is the Hausdorff dimension of \(E \).

2 Two Lemmas

Let \(G_k \) be a set consisting of all the possible union of elements in \(F_k \), define

\[G = \bigcup_{k=0}^{\infty} G_k, \]

(2.1)

and

\[\mathcal{H}^\alpha_\delta(E) = \liminf_{\delta \to 0} \left\{ \sum |U_i|^\alpha : E \subset \cup U_i, |U_i| < \delta \text{ and } U_i \in G \right\}. \]

(2.2)