Isolation and Characterization of Tetrancleotide Microsatellites from Atlantic Haddock
(Melanogrammus aeglefinus)

Patrick T. O’Reilly,1,2,* Arran A. McPherson,1,3 Ellen Kenchington,2
Chris Taggart,1,3 Mathew W. Jones,3 and Paul Bentzen3,4

1Department of Oceanography, Dalhousie University, Halifax, NS, Canada B3H 4J1
2Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth NS, Canada B2Y 4A2
3Marine Gene Probe Laboratory, Dalhousie University, Halifax, NS, Canada B3H 4J1
4Marine Molecular Biotechnology Laboratory, School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA

Abstract: Five tetrancleotide microsatellite loci developed from Atlantic haddock (Melanogrammus aeglefinus) are presented. Loci were isolated using a modified magnetic bead-hybridization selection procedure that enriched for tetrancleotide microsatellites. Loci were polymorphic (3–99 alleles per locus; mean, 33.2) and exhibited high levels of observed heterozygosity (0.07–0.99; mean, 0.73) in a sample of 70 haddock collected from the Scotian Shelf in the Northwest Atlantic Ocean. Primer sets for 5 tetrancleotide microsatellites, originally developed from cod (Gmo34), were also tested in Atlantic haddock; one pair yielded readily detectable product and was variable in the population assayed (29 alleles; heterozygosity, 0.96). These loci are suitable for kinship analyses in aquaculture-related applications, and are potentially useful for resolving population structure in the wild.

Key words: Atlantic haddock, tetrancleotide microsatellite, magnetic-bead enrichment.

INTRODUCTION

Atlantic haddock (Melanogrammus aeglefinus) is a demersal gadoid fish that is found along much of the North Atlantic continental shelf, as far south as the Bay of Biscay in the east and Rhode Island in the west. Canadian commercial landings of haddock have historically been on the order of 100,000 tonnes on the Scotian Shelf (Dept. of Fisheries and Oceans, Canada, 2000), and haddock remains the most economically important commercial fin-fishery in Atlantic Canada. However, since the mid to late 1980s, stock biomass in most regions has declined, with concomitant changes in age structure, reductions in size-at-age, condition, and maturity schedules (Dept. of Fisheries and Oceans, Canada, 2000). The Eastern Scotian Shelf haddock fishery has been closed since 1994.

The decline in the harvest fishery has stimulated development of commercial rearing and aquaculture of haddock for human consumption. As is often the case for marine fish species undergoing aquaculture development, haddock brood stock is collected from the wild and maintained in captivity until spawning time. Frequently, only 10 to 20 males and 10 to 20 females are placed together in a

*Corresponding author: telephone 902-426-4647; fax 902-426-6814 e-mail OReillyP@mar.dfo-mpo.gc.ca

Received September 26, 2001; accepted December 11, 2001.
communal spawning tank, and eggs are collected over the course of days to weeks until spawning is complete (haddock are serial spawners). Little is known about parental (F1) contributions to the surviving offspring (F2). F1 males or females may be suppressing spawning and fertilization success of other F1 individuals through aggression or hormonal responses. If most F1 individuals do produce gametes, variation in reproductive success (e.g., via non-heritable variation in the condition of parents, or differential survival among F1 larvae; see Doyle et al., 1995) may be sufficiently large that trait-based (or random) selection of 20 to 40 F2 fish for future broodstock may represent very few of the original family lines. Thus, the likelihood for inbred F2 fish and loss of genetic variation may be high, and may become magnified in successive generations to the point where the aquaculture operation fails.

Highly variable molecular genetic markers based on polymerase chain reaction (PCR) represent important tools to (1) evaluate the inbreeding potential or pedigree outcome of haddock aquaculture populations produced from communal spawning procedures; (2) develop genotype-based methods to avoid or minimize inbreeding; (3) maintain genetic diversity in aquaculture lines; and (4) assist in resolving stock structure in wild populations that may prove critical to protecting intraspecific diversity. Here, we report 5 new tetranucleotide microsatellites from haddock that were isolated using a modification of the magnetic bead-hybridization selection procedure of Hamilton et al. (1991). Markers of this class typically exhibit markedly reduced PCR stuttering relative to dinucleotide microsatellites (O’Reilly and Wright, 1995) and generally exhibit 4-bp differences between adjacent alleles. We also report results of primer tests of recently published cod (Gadus morhua) tetranucleotide microsatellites (Miller et al., 2000) to cross amplify in haddock.

Materials and Methods

Isolation and Sequencing of Microsatellite Loci

DNA as extracted from a single haddock specimen obtained from the Bay of Fundy and stored in 70% ethanol. Enrichment procedures, following Hamilton et al. (1999), but modified as in McPherson et al. (2001), were used to isolate and clone tetranucleotide microsatellites. Briefly, genomic DNA was digested with the restriction enzyme Rsal. After dephosphorylation using calf intestinal phosphatase, genomic DNA was ligated to SNX linkers (Hamilton et al., 1999) in the presence of the restriction enzyme XmnI, which cuts SNX linker dimers, but not SNX linker–genomic recombinant molecules. This procedure yielded genomic DNA with SNX linkers attached to both ends. Using SNX primers, the recombinant genomic-SNX DNA was PCR amplified and hybridized to (GATA)4 and (GACA)4 oligonucleotides bound to streptavidin-coated paramagnetic beads via a biotin conjugate attached to the 5’ end of the oligonucleotides. Nontargeted DNA was removed from the oligo-bead complex using repeated washes. SNX-genomic recombinant molecules were released from the beads by denaturing at 96°C. In a deviation from the Hamilton et al. (1999) procedure, the recovered SNX-genomic DNA was directly PCR amplified, ligated into a TOPO2.1 T overhang plasmid, (Invitrogen, Carlsbad, Calif.) and transformed into Invitrogen’s ONE Shot competent cells following the manufacturers protocol; Hamilton et al. (1999) used restriction enzymes to digest linker DNA from genomic DNA prior to ligation into pUC18. Plasmid DNA was extracted using Qiagen (Valencia, Calif.) plasmid columns, as outlined by the manufacturer. Insert DNA was cycle sequenced using M13 reverse primer (GGA AAC AGC GAC CAT G) and Amersham-Pharmacia (Piscataway, N.J.) Thermosequenase Dye Terminator cycle sequencing chemistry. The presence of an identical linker sequence on either side of the genomic insert required the use of a modified thermal cycling regimen to sequence the recombinant clones: 25 cycles of 1 minute at 96°C, followed by 30 seconds at 60°C. The increased annealing temperature prevented or minimized interaction (hybridization) between the SNX sequence and the flanking insert. Sequencing results using the annealing temperature of 56°C (recommended by Amersham) were highly variable. Sequencing reactions were analyzed using an ABI 373 stretch automated sequencer.

Sample Preparation, PCR, Electrophoresis, and Visualization of Microsatellite Alleles

DNA from 70 haddock collected from the Western Bank region of the Scotian Shelf was extracted using Qiagen genomic extraction columns according to the manufacturer’s protocol. Loci were amplified individually using a Techne Genius PCR machine. Reactions were carried out in 10-μl volumes, in 50 mM KCl, 20 mM Tris, pH 8.4, 0.2 mM each dNTP, 0.5 μM of unlabeled primer, 0.5 μM of