KHovanov homology is an unknot-detector
by P. B. Kronheimer* and T. S. Mrowka**

ABSTRACT

We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.

1. Introduction

1.1. Statement of results

This paper explores a relationship between the Khovanov cohomology of a knot, as defined in [16], and various homology theories defined using Yang-Mills instantons, of which the archetype is Floer’s instanton homology of 3-manifolds [8]. A consequence of this relationship is a proof that Khovanov cohomology detects the unknot. (For related results, see [10–12].)

Theorem 1.1. — A knot in S^3 is the unknot if and only if its reduced Khovanov cohomology is \mathbb{Z}.

In [21], the authors construct a Floer homology for knots and links in 3-manifolds using moduli spaces of connections with singularities in codimension 2. (The locus of the singularity is essentially the link K, or $\mathbb{R} \times K$ in a cylindrical 4-manifold.) Several variations of this construction are already considered in [21], but we will introduce here one more variation, which we call $I^\mathbb{R}(K)$. Our invariant $I^\mathbb{R}(K)$ is an invariant for unoriented links $K \subset S^3$ with a marked point $x \in K$ and a preferred normal vector v to K at x. The purpose of the normal vector is in making the invariant functorial for link cobordisms: if $S \subset [0,1] \times S^3$ is a link cobordism from K_1 to K_0, not necessarily orientable, but equipped with a path γ joining the respective basepoints and a section v of the normal bundle to S along γ, then there is an induced map,

$$I^\mathbb{R}(K_1) \to I^\mathbb{R}(K_0)$$

that is well-defined up to an overall sign and satisfies a composition law. (We will discuss what is needed to resolve the sign ambiguity in Section 4.4.) The definition is set up so that $I^\mathbb{R}(K) = \mathbb{Z}$ when K is the unknot. We will refer to this homology theory as the

* The work of the first author was supported by the National Science Foundation through NSF grants DMS-0405271 and DMS-0904589.

** The work of the second author was supported by NSF grant DMS-0805841.
reduced singular instanton knot homology of K. (There is also an unreduced version which we call $\Gamma(K)$ and which can be obtained by applying Γ to the union of K with an extra unknotted, unlinked component.) The definitions can be extended by replacing S^3 with an arbitrary closed, oriented 3-manifold Y. The invariants are then functorial for suitable cobordisms of pairs.

Our main result concerning $\Gamma(K)$ is that it is related to reduced Khovanov cohomology by a spectral sequence. The model for this result is a closely-related theorem due to Ozsváth and Szabó [29] concerning the Heegaard Floer homology, with $\mathbb{Z}/2$ coefficients, of a branched double cover of S^3. There is a counterpart to the result of [29] in the context of Seiberg-Witten gauge theory, due to Bloom [3].

Proposition 1.2. — With \mathbb{Z} coefficients, there is a spectral sequence whose E_2 term is the reduced Khovanov cohomology, $\text{Khr}(\bar{K})$, of the mirror image knot \bar{K}, and which abuts to the reduced singular instanton homology $\Gamma(K)$.

As an immediate corollary, we have:

Corollary 1.3. — The rank of the reduced Khovanov cohomology $\text{Khr}(K)$ is at least as large as the rank of $\Gamma(K)$.

To prove Theorem 1.1, it will therefore suffice to show that $\Gamma(K)$ has rank bigger than 1 for non-trivial knots. This will be done by relating $\Gamma(K)$ to a knot homology that was constructed from a different point of view (without singular instantons) by Floer in [9]. Floer’s knot homology was revisited by the authors in [23], where it appears as an invariant $\text{KHI}(K)$ of knots in S^3. (There is a slight difference between $\text{KHI}(K)$ and Floer’s original version, in that the latter leads to a group with twice the rank.) It is defined using $\text{SU}(2)$ gauge theory on a closed 3-manifold obtained from the knot complement. The construction of $\text{KHI}(K)$ in [23] was motivated by Juhász’s work on sutured manifolds in the setting of Heegaard Floer theory [13, 14]: in the context of sutured manifolds, $\text{KHI}(K)$ can be defined as the instanton Floer homology of the sutured 3-manifold obtained from the knot complement by placing two meridional sutures on the torus boundary. It is defined in [23] using complex coefficients for convenience, but one can just as well use \mathbb{Q} or $\mathbb{Z}[1/2]$. The authors establish in [23] that $\text{KHI}(K)$ has rank larger than 1 if K is non-trivial. The proof of Theorem 1.1 is therefore completed by the following proposition (whose proof turns out to be a rather straightforward application of the excision property of instanton Floer homology).

Proposition 1.4. — With \mathbb{Q} coefficients, there is an isomorphism between the singular instanton homology $\Gamma(K; \mathbb{Q})$ and the sutured instanton homology of the knot complement, $\text{KHI}(K; \mathbb{Q})$.

Remark. — We will see later in this paper that one can define a version of $\text{KHI}(K)$ over \mathbb{Z}. The above proposition can then be reformulated as an isomorphism over \mathbb{Z} between $\Gamma(K)$ and $\text{KHI}(K)$.