Spin(9) and almost complex structures on 16-dimensional manifolds

Maurizio Parton · Paolo Piccinni

Received: 7 June 2011 / Accepted: 28 June 2011 / Published online: 17 July 2011
© Springer Science+Business Media B.V. 2011

Abstract For a Spin(9)-structure on a Riemannian manifold M^{16} we write explicitly the matrix ψ of its Kähler 2-forms and the canonical 8-form $\Phi_{\text{Spin}(9)}$. We then prove that $\Phi_{\text{Spin}(9)}$ coincides up to a constant with the fourth coefficient of the characteristic polynomial of ψ. This is inspired by lower dimensional situations, related to Hopf fibrations and to Spin(7). As applications, formulas are deduced for Pontrjagin classes and integrals of $\Phi_{\text{Spin}(9)}$ and $\Phi_{\text{Spin}(9)}^2$ in the special case of holonomy Spin(9).

Keywords Spin(9) · Spin(7) · Octonions · Kähler form

Mathematics Subject Classification (2010) 53C26 · 53C27 · 53C38

1 Introduction

Although Spin(9) belongs to M. Berger’s list in his holonomy theorem, it has been known for a long time that the only simply connected complete Riemannian manifolds with holonomy Spin(9) are the Cayley projective plane $\mathbb{O}P^2 = \text{Spin}^+(9)$ and its dual, the Cayley hyperbolic plane $\mathbb{O}H^2 = \text{Spin}^-(9)$ (cf. [5,12], as well as [10, Chapter 10]). It is also known that, on the unique irreducible 16-dimensional Spin(9)-module Δ_9, the space Λ^8 of exterior 8-forms contains a 1-dimensional invariant subspace Λ^8_1. Thus, any generator of Λ^8_1 can be viewed as
a canonical 8-form $\Phi_{\text{Spin}(9)}$ on \mathbb{R}^{16}, which is Spin(9)-invariant with respect to the standard Spin(9)-structure.

In the same year 1972 when the quoted paper [12] by Brown and Gray appeared, Berger published an article [9] on the Riemannian geometry of rank one symmetric spaces, containing the following very simple definition of a Spin(9)-invariant 8-form $\Phi_{\text{Spin}(9)}$ in \mathbb{R}^{16}:

$$
\Phi_{\text{Spin}(9)} \overset{\text{def}}{=} c \int_{\mathbb{P}^1} p_l^* v_l \, dl.
$$

(1.1)

Here v_l is the volume form on the octonionic lines $l = \{ (x, mx) \}$ or $l = \{ (0, y) \}$ in $\mathbb{O}^2 \cong \mathbb{R}^{16}$, $p_l : \mathbb{O}^2 \to l$ is the projection on l, the integral is taken over the “octonionic projective line” $\mathbb{O}P^1 = S^8$ of all the $l \subset \mathbb{O}^2$ and c is a normalizing constant. In the same article, Berger writes a similar definition: $\Phi_{\text{Sp}(n) \cdot \text{Spin}(1)} \overset{\text{def}}{=} c \int_{\mathbb{P}^{n-1}} p_l^* v_l \, dl$ for a quaternionic 4-form in $\mathbb{H}^n \cong \mathbb{R}^{4n}$. Note that such definitions of $\Phi_{\text{Spin}(9)}$ and $\Phi_{\text{Sp}(n) \cdot \text{Spin}(1)}$ arose from distinguished 8-planes or 4-planes in the two geometries, appearing thus very much in the spirit of (at the time forthcoming) calibrations. It is also worth reminding that the stabilizers of $\Phi_{\text{Spin}(9)}$ in GL(16, \mathbb{R}) and of $\Phi_{\text{Sp}(n) \cdot \text{Spin}(1)}$ in GL(4n, \mathbb{R}) are precisely the subgroups Spin(9) and Sp(n) · Sp(1), respectively (cf. [15, pp. 168–170] and [28, p. 126]).

The paper by Brown and Gray contains a different definition of $\Phi_{\text{Spin}(9)}$, as a Haar integral over Spin(8). A natural question is whether an explicit and possibly simple algebraic expression of $\Phi_{\text{Spin}(9)}$ can be written in \mathbb{R}^{16}, in parallel with the usual definitions of the G2-invariant 3-form Φ_{G_2} on \mathbb{R}^7 or the Spin(7)-invariant 4-form $\Phi_{\text{Spin}(7)}$ on \mathbb{R}^8 (see for example the books [22] and [23]).

Indeed, some such algebraic expressions have already been written. Namely, Abe and Matsubara computed $\Phi_{\text{Spin}(9)}$ obtaining its 702 terms from the triality principle of Spin(8) (see [1] and [2], and note that some of the terms have to be corrected [3]). More recently, a different approach has been presented by Castrillon Lopez et al. [14], where a detailed exam is given for the invariance of elements of $\Lambda^8(\mathbb{R}^{16})$ under the generators of the group Spin(9).

A major progress in understanding Spin(9)-structures came in the context of weak holonomies by the work of Friedrich: in [17] and [18] it is observed that the number of possible “weakened” holonomies Spin(9) is 16, exactly like in the cases of the groups U(n) and G2, and also that a Spin(9)-structure on M^{16} can be described as a certain vector subbundle $V^9 \subset \text{End}(TM)$. This fact suggests a similarity between Spin(9) and the quaternionic group Sp(n) · Sp(1).

More precisely, a Spin(9)-structure is a rank 9 real vector bundle $V^9 \subset \text{End}(TM) \to M$, locally spanned by self-dual involutions \mathcal{I}_α, for $\alpha = 1, \ldots, 9$, such that $\mathcal{I}_\alpha \circ \mathcal{I}_\beta = -\mathcal{I}_\beta \circ \mathcal{I}_\alpha$, for $\alpha \neq \beta$ (cf. Definition 1). From these data, the local almost complex structures

$$
J_{\alpha \beta} \overset{\text{def}}{=} \mathcal{I}_\alpha \circ \mathcal{I}_\beta
$$

(1.2)

are defined on M^{16}, and the 9×9 skew-symmetric matrix of their Kähler 2-forms

$$
\psi \overset{\text{def}}{=} (\psi_{\alpha \beta})
$$

(1.3)

is naturally associated with the Spin(9)-structure. The 36 differential forms $\psi_{\alpha \beta}$, for $\alpha < \beta$, are thus a local system of Kähler two-forms of the Spin(9)-manifold (M^{16}, V^9).

The first result of this article is the explicit computation of the 702 terms of $\Phi_{\text{Spin}(9)}$, according to the work by Abe and Matsubara, and on the grounds of Berger’s definition of