A DYNAMICAL DECOMPOSITION THEOREM

J. M. AARTS, R. J. FOJKINK and J. VERMEER (Delft)

Abstract. By the decomposition theorem \(\dim X \leq n \) if and only if \(X \) admits a decomposition into \(n+1 \) zero-dimensional subspaces \(Z_i \) for \(i = 0, \ldots, n \). If \(f : X \to X \) is a homeomorphism, then under some dimensional restrictions on the set of periodic points, the \(Z_i \) can be chosen to be images of \(Z_0 \) under iterates of \(f \).

1. Introduction

The classical decomposition theorem of dimension theory says that a nonempty metric space has dimension \(n \) if and only if it can be decomposed as a union of \(n+1 \) zero-dimensional subspaces \([1, 2]\). In this paper we study the following problem. For a homeomorphism \(f : X \to X \) on a metric space of dimension \(\dim X = n \), does there exist a zero-dimensional subspace \(A \subset X \) such that \(X = A \cup f(A) \cup \ldots \cup f^{n-1}(A) \)? Obviously, if \(f \) is the identity and \(\dim X > 0 \), then it is impossible to decompose the space in this way. So some condition on the periodic points of \(f \) is required. Theorem 8 gives conditions which are necessary and sufficient.

All spaces are assumed to be metrizable and the dimension function is the covering dimension. A union \(X = A_0 \cup A_1 \cup \ldots \cup A_n \) is called a decomposition of \(X \) and, if the \(A_i \) are pairwise disjoint, the decomposition is called a partition. We shall assume that the space \(X \) is nonempty. We first prove our main theorem and then we give some applications.

2. Decomposing a space into homeomorphic zero-dimensional spaces

Theorem 1. Suppose that \(\dim X \leq n \) and suppose that \(f : X \to X \) is a homeomorphism such that \(f \) has no points of period \(\leq n \). Then there exists a dense \(G_\delta \)-subset \(Z \subset X \) with \(\dim Z \leq 0 \) and

\[
X = Z \cup f(Z) \cup \ldots \cup f^n(Z).
\]

Key words and phrases: dimension, decomposition.
1991 Mathematics Subject Classification: 54F35.
The proof requires some preparation. For each \(i \in \mathbb{N} \) let \(\{ U_\alpha \mid \alpha \in A_i \} \) be a locally finite cover of \(X \) that refines the collection of all open \(1 \) balls. Let \(\{ F_\alpha \mid \alpha \in A_i \} \) be a closed shrinking. We may assume that \(F_\alpha \neq \emptyset \) for all \(\alpha \in A_i \). We may also assume that each index-set \(A_i \) is well-ordered and that the \(A_i \) are pairwise disjoint. The union of all the index-sets \(A = \bigcup A_i \) can be well-ordered by defining that \(a_i < a_j \) for elements \(a_i \in A_i \) and \(a_j \in A_j \) whenever \(i < j \). In this way we get an open collection \(\mathcal{U} = \{ U_\alpha \mid \alpha \in A \} \) and a closed shrinking \(\mathcal{F} = \{ F_\alpha \mid \alpha \in A \} \) with the following property: if \(\mathcal{V} = \{ V_\alpha \mid \alpha \in A \} \) is a family such that \(F_\alpha \subset V_\alpha \subset U_\alpha \) for each \(\alpha \in A \), then \(\mathcal{V} \) is a \(\sigma \)-locally finite basis. Because of this property, we call \((\mathcal{F}, \mathcal{U})\) a framework for open bases of \(X \). Note that for each \(\beta \in A \), the collection \(\{ U_\alpha \mid \alpha < \beta \} \) is locally finite.

Proposition 2. A metric space contains a dense zero-dimensional \(F_\sigma \)-subset.

Proof. Let \((\mathcal{F}, \mathcal{U})\) be a framework for open bases and let \(\mathcal{F} = \bigcup \{ F_\alpha \mid \alpha \in A \} \) be as in the definition of a framework. Choose \(x_\alpha \in F_\alpha \) for each \(\alpha \in A_i \). It is clear that the collection of points \(C_i = \{ x_\alpha \mid \alpha \in A_i \} \) is a zero-dimensional closed subset. The union of the \(C_i \) is a dense zero-dimensional \(F_\sigma \). \(\Box \)

The idea of the proof of our main theorem follows. Suppose that \((\mathcal{F}, \mathcal{U})\) is a framework of \(X \). In a very special way we shall select sets \(S_\alpha \) which separate \(F_\alpha \) and \(X \setminus U_\alpha \). The union \(S = \bigcup \{ S_\alpha \mid \alpha \in A \} \) is a \(F_\sigma \)-subset of \(X \) and its complement \(Z = X \setminus S \) is zero-dimensional. The special way in which we select the separating sets ensures that \(S \cap f(S) \cap \ldots \cap f^n(S) = \emptyset \) or equivalently \(S_\alpha \cap f(S_{\alpha_1}) \cap \ldots \cap f^n(S_{\alpha_n}) = \emptyset \) for each possible choice of indices \(\alpha_i \). So \(Z \) has the property that \(X = Z \cup f(Z) \cup \ldots \cup f^n(Z) \).

The special way in which we select the separators \(S_\alpha \) involves a process of peeling off zero-dimensional \(F_\sigma \)-subsets. The following proposition will be employed in the proof.

Proposition 3. Suppose that \(X \) is an \(n \)-dimensional space. There exists a zero-dimensional \(F_\sigma \)-subset \(F \) such that \(X \setminus F \) is at most \((n-1) \)-dimensional.

Proof. By induction. The result is obviously true if \(X \) is zero-dimensional. Suppose that \(\dim X = n \). Let \((\mathcal{F}, \mathcal{U})\) be a framework. For each \(\alpha \in A \) choose a closed \(S_\alpha \) separating \(F_\alpha \) and \(X \setminus U_\alpha \) such that \(\dim S_\alpha \leq n-1 \). The union \(S = \bigcup \{ S_\alpha \mid \alpha \in A \} \) is closed and at most \((n-1) \)-dimensional, so \(S = \bigcup S_i \) is an \((n-1) \)-dimensional \(F_\sigma \). Its complement \(G \) is a zero-dimensional \(G_\sigma \), so we can partition the space as \(X = G \cup S \), where \(G \) is a zero-dimensional and \(S \) is an \(F_\sigma \) of dimension \(\leq n-1 \). By induction, we can find a zero-dimensional \(F_\sigma \)-subset \(F \subset S \) such that \(X \setminus F \) is at most \((n-2) \)-dimensional. By the addition theorem, the complement \(X \setminus F \) is at most \((n-1) \)-dimensional. \(\Box \)