ON THE PRIME GRAPH OF \(PSL(2, p) \) WHERE \(p > 3 \) IS A PRIME NUMBER

BAHMAN KHOSRAV1, BEHNAM KHOSRAV2 and BEHROOZ KHOSRAV3

1 Dept. of Math., Faculty of Math. Sci., Shahid Beheshti Univ., Evin, Tehran, 19882, Iran
2 Dept. of Pure Math., Faculty of Math. and Computer Sci., Amir Kabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran
3 Institute for Studies in Theoretical Physics and Mathematics (IPM)

e-mail: khosravibbl@yahoo.com

(Received February 3, 2006; revised February 20, 2007; accepted March 1, 2007)

Abstract. Let \(G \) be a finite group. We define the prime graph \(\Gamma(G) \) as follows. The vertices of \(\Gamma(G) \) are the primes dividing the order of \(G \) and two distinct vertices \(p, q \) are joined by an edge if there is an element in \(G \) of order \(pq \). Recently M. Hagie [5] determined finite groups \(G \) satisfying \(\Gamma(G) = \Gamma(S) \), where \(S \) is a sporadic simple group. Let \(p > 3 \) be a prime number. In this paper we determine finite groups \(G \) such that \(\Gamma(G) = \Gamma(PSL(2, p)) \). As a consequence of our results we prove that if \(p > 11 \) is a prime number and \(p \neq 1 \mod(12) \), then \(PSL(2, p) \) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.

1. Introduction

If \(n \) is an integer, then we denote by \(\pi(n) \) the set of all prime divisors of \(n \). If \(G \) is a finite group, then the set \(\pi(|G|) \) is denoted by \(\pi(G) \). Also the set of orders of elements of \(G \) is denoted by \(\pi_e(G) \). Obviously \(\pi_e(G) \) is partially ordered by divisibility. Therefore it is uniquely determined by \(\mu(G) \), the subset of its maximal elements. We construct the prime graph of \(G \) as

*The third author was supported in part by a grant from IPM (No. 84200021).
Key words and phrases: simple group, prime graph, order elements, linear group.
2000 Mathematics Subject Classification: 20D05, 20D06, 20D08.

0236-5294/8 20.00 © 2007 Akadémiai Kiadó, Budapest
follows: The prime graph \(\Gamma(G) \) of a group \(G \) is the graph whose vertex set is \(\pi(G) \), and two distinct primes \(p \) and \(q \) are joined by an edge (we write \(p \sim q \)) if and only if \(G \) contains an element of order \(pq \). Let \(t(G) \) be the number of connected components of \(\Gamma(G) \) and let \(\pi_1(G), \pi_2(G), \ldots, \pi_{t(G)}(G) \) be the connected components of \(\Gamma(G) \). Sometimes we use the notation \(\pi_i \) instead of \(\pi_i(G) \). If \(2 \in \pi_i(G) \), then we always suppose \(2 \in \pi_1 \) and \(\pi_i \), where \(i \geq 2 \) are called the odd component(s) of \(\Gamma(G) \). The connected components of non-abelian simple groups with at least two prime graph components are listed in [10, Tables 1, 2].

The concept of prime graph arose during the investigation of certain cohomological questions associated with integral representations of finite groups. It has been proved that for every finite group \(G \) we have \(t(G) \leq 6 \) [9, 15, 26] and the diameter of \(\Gamma(G) \) is at most 5 [16]. Also Hage [5] determined finite groups \(G \) satisfying \(\Gamma(G) = \Gamma(S) \), where \(S \) is a sporadic simple group (see also [12, 13, 14]). In this paper, we determine finite groups \(G \) such that their prime graph is \(\Gamma(\text{PSL}(2, p)) \), where \(p > 3 \) is a prime number. As a consequence of this result, we prove that if \(p > 11 \) is a prime number and \(p \neq 1 \) (mod 12), then \(\text{PSL}(2, p) \) is uniquely determined by its prime graph and so these groups are characterizable by their prime graphs.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard and refer to [1], for example. We use the results of J. S. Williams [26], N. Iyori and H. Yamaki [9] and A. S. Kondrat’ev [15] about the prime graph of simple groups and the results of M. S. Lucido [17] about the prime graph of almost simple groups. We denote by \((a, b) \) the greatest common divisor of positive integers \(a \) and \(b \). Let \(m \) be a positive integer and \(p \) be a prime number. Then \(|m|_p \) denotes the \(p \)-part of \(m \). In other words, \(|m|_p = p^k \) if \(p^k \parallel m \) (i.e., \(p^k \mid m \) but \(p^{k+1} \nmid m \)).

2. Preliminary results

Remark 2.1. First we give a brief description of the prime graph of \(\text{PSL}(2, p) \). By the result of Dickson [8, p. 213], it follows that

\[
\mu(\text{PSL}(2, p)) = \left\{ p, \frac{p-1}{2}, \frac{p+1}{2} \right\}.
\]

Therefore by assumption, the prime graph of \(\text{PSL}(2, p) \) has three connected components, since \((p-1)/2, (p+1)/2 \) are odd. Also \(|\mu(\text{PSL}(2, p))| = 3 \), and so every component of \(\Gamma(\text{PSL}(2, p)) \) is a clique (a complete subgraph). We