INVESTIGATION OF β-EMISSION METHODS OF MONITORING COOLANT WATER LEVEL IN NUCLEAR POWER PLANTS

S. I. Aleksandrov, A. A. Bol'shov,
A. V. Kornienko, I. V Novikov,
V. V. Postnikov,* V. P. Shishov,
and G. V. Yurkin

This investigation was performed on a vessel heat-engineering bench. The working medium was water under pressure up to 20.5 MPa and temperature from 20 (cold) to 350°C (hot). The controllers were a β-emission sensor of level and a Sapfir-22DD differential manometer as the standard. The objective was to determine the characteristics of a β-emission sensor under the conditions of the working medium. Analysis of the experimental data showed that the indications of the β-emission sensor and differential manometer were identical and linear as a function of the level of both the cold and hot water. The characteristics of the β-emission sensor are: minimal response time and measurement error, very small dimensions, serviceability at pressures to 20.5 MPa and temperature to 350°C, at least 10 years life, and energy independence of the primary converter.

The operational reliability and safety of water-cooled nuclear power plants can largely be secured by monitoring the state of the coolant by means of in-reactor level sensors. This can be achieved in the normal operating regime as well as during excursions from it. In-reactor level sensors must possess minimal dimensions, minimal response time, structural simplicity, and adequate life [1]. In terms of the principle of operation, coolant level sensors can be classified as visual, mechanical, hydrostatic, electrical, acoustic, electromagnetic, nuclear-physical (radio isotopic), and others [1–8].

In this article, we present the results of investigations of β-emission coolant level sensors based on β-emission as a variant of the nuclear-physical principle.

The principle of operation of β-emission level sensors is based on the detection of β-particles after their passage from the emitter (β-emitting isotope) up to the sensitive element through a layer of coolant. Analysis showed that the average energy of the β-particles for use as an emitter must be at least 0.8 MeV and the half-life of the parent isotope must be at least 10 yr [6, 7]. For this reason, 90Y (short-lived, daughter isotope relative to 90Sr), emitting β-particles with maximum energy 2.26 MeV and half-life of parent isotope 29 yr, is recognized as being most effective [9].

Direct-charge sensors and β-emission neutron detectors, which are used to detect neutron radiation and whose sources of β-particles are short-lived 104Rh and 108Ag, 110Ag as products of neutron activation of stable 103Rh and 107Ag, 109Ag, can be considered as certain analogs of a β-emission level sensor [6, 7]. The principle of generation and detection of the signal of a β-emission level sensor is similar to that in a direct-charge sensor or β-emission neutron detector. Experiments performed in a research reactor have shown that the sensitivity of a sensor to neutron and gamma radiation of an operating reactor is,
respectively, $3 \times 10^{-22} \text{ (A/m)/(sec}^{-1}\text{.cm}^{-2})$ and $0.88 \times 10^{-16} \text{ (A/m)/(R/h)}$. Therefore, for neutron flux density $10^7 \text{ sec}^{-1}\text{.cm}^{-2}$ and γ-ray dose rate 10^4 R/h at a possible location for a β-emission level sensor, the background signal generated by, respectively, neutron and gamma radiation of the reactor will be 3×10^{-6} and $0.88 \times 10^{-3} \text{ nA/m}$, which is negligibly less than the sensor signal (to 3 nA/m).

The computational part of these investigations of the characteristics of β-emission level sensor, which entail evaluation of the passage of β-particles through matter, was performed using the MCNP-4A software [6, 10].