FUNCTION SPACES ON τ-CORSON COMPACTA AND TIGHTNESS OF POLYADIC SPACES

M. BELL, Canada, and W. MARCISZEWSKI, Warszawa

(Received December 7, 2001)

Abstract. We apply the general theory of τ-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness τ. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.

Keywords: boolean, polyadic, function space, Corson, compact, $C_p(X)$, Eberlein, tightness

MSC 2000: 54D30, 54C35

0. Introduction

All of our spaces are assumed to be completely regular. For an infinite cardinal κ, let $A_\kappa = \kappa \cup \{\infty\}$ be the one point compactification of the discrete space κ. For a cardinal λ, let A_κ^λ be the product of λ copies of A_κ endowed with the product topology. Polyadic spaces, introduced by Mrowka [15], are the continuous images of the spaces A_κ^λ.

The main goal of this paper is to remove the assumption of zero-dimensionality from the hypothesis of the following result by Bell

Research of the first author supported by NSERC of Canada.
Research of the second author supported by KBN grant 2 P03A 011 15. This paper was written while the second author was visiting the University of Manitoba in 2000. He expresses his gratitude to the Department of Mathematics of U.M. for its hospitality.
M. Bell died on December 9, 2001.
Result 0.1 [4]. If X is a zero-dimensional polyadic space of tightness τ and cellularity μ, then there exists a closed $F \subset A_\mu^\tau$ such that F continuously maps onto X.

and so get a useful structure theorem for arbitrary polyadic spaces. Motivation for Result 0.1 came from the problem in Gerlits [8] of whether every polyadic space of tightness τ and cellularity μ is a continuous image of A_μ^τ; we now know (Bell [5]) that this problem has a negative answer—there is a zero-dimensional polyadic space of countable tightness which is not an image of A_μ^τ, for any μ.

Our main problem (of removing zero-dimensionality) belongs to a general class of problems that can be described as follows: For which classes \mathcal{C} of compact spaces is it true that for every $X \in \mathcal{C}$, there exists a zero-dimensional $K \in \mathcal{C}$ such that X is an image of K? That is, when is the family of zero-dimensional members of \mathcal{C} mapping-universal for \mathcal{C}? In our case, to solve our problem, we need to develop the general theory of τ-Corson Compact spaces. Since the core of our polyadic result is valid for a larger class of spaces—the continuous images of τ-Valdivia compact spaces (see Section 2 for a definition), we present our main result as a corollary to a Valdivia result.

When the tightness is countable, there is the following important result of Benyamini, Rudin and Wage which we shall relate to.

Result 0.2 [6]. X is a Uniform Eberlein compact space \iff there exists a cardinal κ and a closed $F \subset A_\kappa^\tau$ such that F continuously maps onto X.

Let us recall that a space X is a Uniform Eberlein compact space if X is homeomorphic to a weakly compact subset of a Hilbert space.

1. Boolean preliminaries

We denote the algebra of all clopen subsets of a space X by $\text{CO}(X)$. For a collection $\mathcal{C} \subset \text{CO}(X)$, put $\langle \mathcal{C} \rangle$ equal to the subalgebra of $\text{CO}(X)$ generated by \mathcal{C}. A generating family for $\text{CO}(X)$ is a $\mathcal{C} \subset \text{CO}(X)$ such that $\langle \mathcal{C} \rangle = \text{CO}(X)$.

A Boolean space is a compact space X which has $\text{CO}(X)$ as a basis. If \mathcal{B} is a boolean algebra, then $\text{st}(\mathcal{B})$ is the Stone space of all ultrafilters of \mathcal{B} which uses $\{B^+ : B \in \mathcal{B}\}$ as a basis where for $B \in \mathcal{B}$, $B^+ = \{p \in \text{st}(\mathcal{B}) : B \in p\}$. If \mathcal{C} is a subalgebra of \mathcal{B} then the Stone map $\alpha: \text{st}(\mathcal{B}) \to \text{st}(\mathcal{C})$ is defined by $\alpha(p) = p \cap \mathcal{C}$ and is the canonical continuous surjection.

Given a set A and a cardinal τ, we denote by $\Sigma_\tau(R^A)$ ($\Sigma_\tau(2^A)$) the subspace of the product R^A (2^A) consisting of all points $x \in R^A$ ($x \in 2^A$) such that $|\{a \in A: x(a) \neq 0\}| \leq \tau$. 900