Abstract. The construction of the extended double cover was introduced by N. Alon [1] in 1986. For a simple graph G with vertex set $V = \{v_1, v_2, \ldots, v_n\}$, the extended double cover of G, denoted G^*, is the bipartite graph with bipartition (X, Y) where $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$, in which x_i and y_j are adjacent iff $i = j$ or v_i and v_j are adjacent in G.

In this paper we obtain formulas for the characteristic polynomial and the spectrum of G^* in terms of the corresponding information of G. Three formulas are derived for the number of spanning trees in G^* for a connected regular graph G. We show that while the extended double covers of cospectral graphs are cospectral, the converse does not hold. Some results on the spectra of the nth iterated double cover are also presented.

Keywords: characteristic polynomial of graph, graph spectra, extended double cover of graph

MSC 2000: 05C50, 05C30

1. Introduction

The spectra of graphs have long been studied and the study in this field has found applications in a variety of problems in theoretical chemistry, quantum mechanics, statistical physics, computer and information sciences, as well as some areas of mathematics including spectral Riemannian geometry (see [2], [4]–[7], [9]–[11] and the cited references there).

For studying networks N. Alon [1] introduced, in 1986, the extended double cover of a graph to obtain expanders from magnifiers. This motivated our interest in studying the spectra of the extended double cover graphs.

This work was supported in part by the RDG grant from the Penn State University.
Throughout the paper G is always used to denote a simple graph with $n \geq 1$ vertices. For a simple graph G with vertex set $V = \{v_1, v_2, \ldots, v_n\}$, the extended double cover of G, denoted as G^*, is the bipartite graph with bipartition (X, Y) where $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$, in which x_i and y_j are adjacent iff $i = j$ or v_i and v_j are adjacent in G.

For example, the complete bipartite graph $K_{n,n}$ is the extended double cover of the complete graph K_n. It is easy to see that G^* is connected iff G is connected, and G^* is regular of degree $r + 1$ iff G is regular of degree r.

For a graph G with adjacency matrix A, the characteristic polynomial of G is
\[\chi(G, \lambda) = \lambda^n - \alpha_1 \lambda^{n-1} + \cdots - \alpha_n, \]
where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the eigenvalues of A (i.e. the zeros of $\chi(G, \lambda)$) and the spectrum of A (which consists of the n eigenvalues) are called the eigenvalues and the spectrum of G, respectively. For other notation and terminology not defined here the reader may refer to the books [2] and [3].

In the next section we shall give formulas for the characteristic polynomial and the spectrum of G^* in terms of the corresponding information of G. Three formulas are derived for the number of spanning trees in G^* for a connected regular graph G.

While the extended double covers of cospectral graphs are cospectral, we show the converse does not hold. Some results on the spectra of the nth iterated double cover are also presented.

2. Results

Theorem 1.

(i) \[\chi(G^*, \lambda) = (-1)^n \chi(G, \lambda - 1) \chi(G, -\lambda - 1). \]

(ii) Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the spectrum of G.

Then the spectrum of G^* consists of $\pm (\lambda_1 + 1), \pm (\lambda_2 + 1), \ldots, \pm (\lambda_n + 1)$.

Proof. Let G have the adjacency matrix A. Then it is not difficult to see that the partitioned matrix \[
\begin{pmatrix}
0 & A + I \\
A + I & 0
\end{pmatrix}
\] is the adjacency matrix of G^*, in which all 0, A and I are $n \times n$ matrices. So, \[
\chi(G^*, \lambda) = \begin{vmatrix}
\lambda I & -(A + I) \\
-(A + I) & \lambda I
\end{vmatrix} = \lambda^n \begin{vmatrix} I & -\lambda^{-1}(A + I) \\
-(A + I) & \lambda I
\end{vmatrix}.
\]

It is well known in matrix theory (see, for example, [8, p. 45]) that if M is an invertible matrix then \[
\begin{vmatrix} M & N \\
P & Q \end{vmatrix} = |M| \cdot |Q - PM^{-1}N|.
\]

So, \[
\chi(G^*, \lambda) = \lambda^n |I - \lambda^{-1}(A + I)^2| = |\lambda^2 I - (A + I)^2| = |\lambda I - (A + I)| \cdot |\lambda I + (A + I)| = (-1)^n |(\lambda - 1)I - A| \cdot |(-\lambda - 1)I - A| = (-1)^n \chi(G, \lambda - 1) \chi(G, -\lambda - 1).
\]