Projective Characters of the Infinite Generalized Symmetric Group

A. V. Dudko and N. I. Nessonov

Received May 12, 2006

Abstract. We consider the infinite generalized symmetric group $B_\infty^\infty \times \mathbb{Z}_m^\infty$, introduce its covering \tilde{B}_m, and describe all indecomposable characters on the group \tilde{B}_m.

Key words: projective representation, infinite generalized symmetric group, indecomposable character, covering group.

By definition, the generalized symmetric group B_∞^{∞} is the semidirect product $S(\infty) \ltimes \mathbb{Z}_m^{\infty}$, where $S(\infty)$ is the group of all finite permutations of \mathbb{N} and \mathbb{Z}_m^{∞} is the set of sequences $\{z_j\}_{j=1}^{\infty}$, with $\bar{z}_j = 0$ for all but finitely many j, so that $S(\infty)$ naturally acts on \mathbb{Z}_m^{∞}. Here we announce a complete classification of finite type projective factor representations of the group B_∞^{∞}. To these representations, the well-known construction in [4] assigns ordinary factor representations of the covering group

$$\tilde{B}_m = \langle \tilde{s}_i, \tilde{w}_j \mid i, j \in \mathbb{N} \rangle \mid \tilde{s}_i^2 = 1; \tilde{w}_i^m = 1; (\tilde{s}_i \tilde{s}_{i+1})^3 = 1; \tilde{s}_i \tilde{w}_i = \tilde{w}_{i+1} \tilde{s}_i;$$

$$\tilde{s}_i \tilde{w}_j = \vartheta \tilde{w}_j \tilde{s}_i, j \neq i, i + 1; (\tilde{s}_i \tilde{s}_j)^2 = \nu, |i - j| > 1; \tilde{w}_i \tilde{w}_j = \mu \tilde{w}_j \tilde{w}_i, i \neq j),$$

(1)

where ϑ, ν, and μ are central elements such that $\vartheta^{(2,m)} = \nu^2 = \mu^{(2,m)} = 1$. (Here $(2, m)$ is the least common divisor of 2 and m.) A similar problem for the group $S(\infty)$ was solved by Nazarov [5] (see also [3]). Clearly, the operators $\pi(\vartheta)$, $\pi(\nu)$, and $\pi(\mu)$ can differ only in sign from the identity operator for any unitary factor representation π of the group \tilde{B}_m^{∞}. On the other hand, the ordered triple $c(\pi)$ can be viewed as an element of the second cohomology group

$$\mathcal{H}^2(B_m^{\infty}, T) = \begin{cases} \mathbb{Z}_2^3 & \text{if } m = 2k \ (k \in \mathbb{N}), \\ \mathbb{Z}_2^2 & \text{if } m = 2k - 1 \end{cases}$$

(where T stands for the one-dimensional torus) and hence defines some central extension of B_m^{∞}. Clearly, $c(\pi \otimes \pi') = c(\pi)c(\pi')$ (pointwise multiplication).

1. Ordinary representations of B_m^{∞} were independently described in [1] and [2]. To compute the character of an ordinary representation, let us first parametrize conjugacy classes. For any $g \in B_m^{\infty}$, there exist $s \in S(\infty)$ and $w = (w_i^d) \in \mathbb{Z}_m^{\infty}$ such that $g = sw$. Let \mathbb{N}/s be the set of orbits of the permutation s, and let $s(p)$ be the cycle that coincides with s on the orbit p. For $p \in \mathbb{N}/s$, set $w(p) = \prod_{i \in p} w_i^d$. The unordered set of pairs $\{(|p|, w(p))\}_{p \in \mathbb{N}/s}$, where $|p|$ is the cardinality of an orbit p, is a complete conjugacy invariant in the group B_m^{∞}.

Theorem 1. Let π be a finite type factor representation of the group B_m^{∞}. Then there exist two nonincreasing sequences $\alpha = \{\alpha_i\}$ and $\beta = \{\beta_i\}$ of positive numbers with $\sum (\alpha_j + \beta_j) < 1$, two sequences $\tilde{\alpha} = \{\tilde{\alpha}_i\}$ and $\tilde{\beta} = \{\tilde{\beta}_i\}$ of characters of the group \mathbb{Z}_m, and a normalized positive definite function ζ on \mathbb{Z}_m such that the values of the character $\chi^{\tilde{\alpha} \tilde{\beta}}_{\beta \beta}$ of the representation π are given by the formula

$$\chi^{\tilde{\alpha} \tilde{\beta}}_{\beta \beta}(sw) = \prod_{p \in \mathbb{N}/s} \left\{ \sum_{j} \alpha_j^{|p|} \tilde{\alpha}_i(w(p)) + (-1)^{|p| - 1} \beta_j^{|p|} \tilde{\beta}_i(w(p)) \right\} \zeta \zeta(w(p)), \quad (2)$$

Received May 12, 2006
where

$$\delta_p = \begin{cases} 1 - \sum (\alpha_j + \beta_j) & \text{for } |p| = 1, \\ 0 & \text{for } |p| > 1. \end{cases}$$

2. Basic representations of the group B^∞_m. Let $\mathcal{E} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathcal{I} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathcal{J} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$, and $\mathcal{K} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ be elements of the algebra $M_2(\mathbb{C})$ of complex 2×2 matrices, and let tr_2 be the normalized trace on $M_2(\mathbb{C})$. We define a representation F of \widetilde{B}^∞_m on the generators by setting $F(\tilde{s}_k) = \mathcal{I}$ and $F(\tilde{w}_k) = (-1)^k \mathcal{J}$. Since $\mathcal{I} \mathcal{J} = -\mathcal{J} \mathcal{I}$, it follows that $c(F) = (I, -I, I)$. Next, let $B = \bigotimes_{i \in \mathbb{N}} M_i$ and $\tau = \bigotimes_{i \in \mathbb{N}} \tau_i$ ($M_i = M_2(\mathbb{C})$ and $\tau_i = \text{tr}_2$), $\mathcal{M}_{2n-1} = \mathcal{K}^{\otimes (n-1)} \otimes \mathcal{I} \otimes \mathcal{E}^\otimes \infty$, and $\mathcal{M}_{2n} = \mathcal{K}^{\otimes (n-1)} \otimes \mathcal{J} \otimes \mathcal{E}^\otimes \infty$. We treat B as a $*$-subalgebra of the II_1-factor M corresponding to the GNS-representation of B for the state τ. Define mappings $\Pi, \Phi: \widetilde{B}^\infty_m \to B$ on the generators by the relations

$$\Pi(\tilde{s}_k) = \frac{1}{\sqrt{2}} (\mathcal{M}_k - \mathcal{M}_{k+1}), \quad \Pi(\tilde{w}_k) = (-1)^k \mathcal{M}_k, \quad \Phi(\tilde{s}_k) = \frac{1}{\sqrt{2k}} (\sqrt{k-1} \mathcal{M}_{k-1} - \sqrt{k+1} \mathcal{M}_k) \quad (\text{see [5]}), \quad \Phi(\tilde{w}_k) = \mathcal{E}^\otimes \infty. \quad (3)$$

A straightforward argument shows that Π and Φ extend to be II_1-factor representations of \widetilde{B}^∞_m such that $c(\Pi) = (-I, -I, I)$ and $c(\Phi) = (-I, I, I)$. For odd m, in view of the conditions imposed on the central elements ϑ, ν, μ in (1), only the representation Φ survives. Any other nontrivial triple can be obtained as the product of at most three distinct factors from the set $\{c(\Pi), c(\Phi), c(F)\}$. The corresponding characters of the tensor products of the representations Π, Φ, and F, as well as the associated GNS-representations, are said to be basic.

Theorem 2. All basic representations are factor representations.

3. Classification of characters of the group B^∞_m. The group B^∞_m is generated by the elements s_i and w_i satisfying relations (1) with $\vartheta = \nu = \mu = 1$. We define a homomorphism $\text{pr}: \widetilde{B}^\infty_m \to B^\infty_m$ on the generators by setting $\text{pr}(v) = 1$ for $v = \vartheta, \nu, \mu$, $\text{pr}(\tilde{s}_i) = s_i$, and $\text{pr}(\tilde{w}_i) = w_i$. If $b \in \widetilde{B}^\infty_m$ and $\text{pr}(b) = sw$, then $b = \prod_{p \in \mathbb{N}/s} b_p$, where $b_p \in \text{pr}^{-1}(s^{(p)}w(p))$.

Theorem 3. Let π be a finite type factor representation of the group \widetilde{B}^∞_m, let χ_π be the corresponding trace, and let π_μ be the basic representation such that $c(\pi_\mu) = c(\pi)$. Then there exist $\alpha, \beta, \tilde{\alpha},$ and $\tilde{\beta}$ (see Theorem 1) such that

$$\chi_\pi(b) = \chi_{\pi_\alpha}(b) \chi_{\beta \tilde{\beta}}^{\tilde{\alpha}}(\text{pr}(b)), \quad \text{where } b \in \widetilde{B}^\infty_m. \quad (5)$$

Note that, for given χ_π and χ_{π_μ}, the character $\chi_{\beta \tilde{\beta}}^{\tilde{\alpha}}$ is not uniquely determined from (5). This ambiguity is related to the properties of the zero set of the function χ_π and can be described explicitly for each extension.

Sketch of Proof of Theorem 3. The characters of factor representations are said to be indecomposable. One can prove the indecomposability of the character χ_π defined in (5) by using Theorem 2 and a multiplicativity argument.

As to the converse statement, we omit the technicalities and explain the main idea of the proof for the triplets $(-I, I, I)$ and $(-I, -I, I)$.

If π is a factor representation of \widetilde{B}^∞_m and $c(\pi) = (-I, I, I)$, then, using the properties of conjugacy classes, one can prove that

$$\chi_\pi(b) = 0 \text{ if the permutation } s \text{ in the formula } \text{pr}(b) = sw \text{ has a cycle of even length}. \quad (6)$$