RETRACT EXTENSIONS OF ORDERED SETS

N. Kehayopulu, J. S. Ponizovskii, and K. P. Shum

The concept of retract extension of an ordered set is introduced and studied. We give an example of a retract extension and an example that is not a retract extension. Bibliography: 12 titles.

1. Introduction. Prerequisites

The extension problem for groups is as follows: given two groups H and K, construct all groups G that have a normal subgroup N such that N is isomorphic to H (in symbol, $N \cong H$) and $G/N \cong K$ (where G/N is the quotient of G by N). The group G is called the Schreier extension or simply the extension of H by K. Given a semigroup S and a semigroup T with zero, a semigroup V is called an (ideal) extension (or simply an extension) of P by Q if there exists an ideal P' of V such that P' is isomorphic to P and the Rees quotient V/P' is isomorphic to Q. The extension problem for semigroups (or ordered semigroups) is as follows. Given a semigroup S and a semigroup T with zero (S and T are disjoint), construct all the semigroups V that are extensions of S by T. For the definition of the Rees quotient for semigroups and ordered semigroups, we refer to [12] and [9], respectively. Ideal extensions of semigroups were considered in [3] with a detailed exposition of the theory presented in [4, 12]. Extensions of weakly reductive semigroups, strict and pure extensions, retract extensions, dense extensions, equivalent extensions were also considered in [12]. Ideal extensions of totally ordered semigroups are studied in [6, 7] and ideal extensions of topological semigroups are dealt with in [2, 5]. We refer to [8] for ideal extensions of lattices and to [9] for ideal extensions of ordered semigroups. Inspired by semigroups, ideal extensions of partially ordered sets were studied in [10]. If P and Q are two disjoint ordered sets, an ordered set V is called an extension of P by Q if there is an ideal P' of V such that P' is isomorphic to P and the complement $V \setminus P'$ of P' to V is isomorphic to Q. The ideal extension problem for ordered sets is as follows: given two disjoint ordered sets P and Q, construct (all) ordered sets V that are (ideal) extensions of P by Q. We are often interested in building more complicated semigroups, lattices, ordered sets, ordered or topological semigroups by using objects of a “simpler” structure, and this can sometimes be achieved by constructing ideal extensions. Equivalent extensions of ordered sets were considered by Kehayopulu and Shum in [11]. In the present paper, we introduce the concept of retract extension of ordered set and characterize retract extensions. As illustrative examples, we give an example of a retract extension and an example that is not a retract extension. In fact, Example 1 considered in [10] is an extension of an ordered set P by an ordered set Q (P and Q are disjoint), which is not a retract extension. The Hasse diagram of that extension was given in [10].

Let (V, \leq) be an ordered set. A nonempty subset P' of V is called an ideal of V if $a \in P'$ and $V \ni b \leq a$ implies that $b \in P'$ (see [1]). Each nonempty subset P' of an ordered set (V, \leq_V) with a relation “$\leq_{P'}$” on P' defined by $\leq_{P'} := \leq_V \cap (P' \times P')$ is an ordered set. In the sequel, each subset P' of an ordered set (V, \leq_V) is regarded as an ordered set endowed with the order $\leq_{P'} := \leq_V \cap (P' \times P')$. We denote by $V \setminus P'$ the complement of P' in V.

Definition. If (P, \leq_P) and (Q, \leq_Q) are two disjoint ordered sets, an ordered set (V, \leq_V) is called an ideal extension (or just an extension) of P by Q if there exists an ideal P' of V such that

$$(P', \leq_{P'}) \cong (P, \leq_P) \quad \text{and} \quad (V \setminus P', \leq_{V \setminus P'}) \cong (Q, \leq_Q),$$

where $\leq_{P'} := \leq_V \cap (P' \times P')$ and $\leq_{V \setminus P'} := \leq_V \cap ((V \setminus P') \times (V \setminus P'))$ (see [10]).

Throughout the paper we use the following notation.

Notation 1. If (V, \leq_V) is an extension of P by Q, unless otherwise stated, we always denote by φ and ψ the isomorphisms

*University of Athens Department of Mathematics, Panepistimiopolis, Athens 157 84, Greece, e-mail: nkehayop@cc.uoa.gr.

†Russian State Hydrometeorological University, St.Petersburg, Russia, e-mail: jp@4518.spb.edu.

‡Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China (SAR), e-mail: kpsnumath.cuhk.edu.hk.

Theorem 1. \(\varphi : (P, \leq_P) \to (P', \leq_{P'} \cap (P' \times P')) \) and \(\psi : (Q, \leq_Q) \to (V \setminus P', \leq_V \cap ((V \setminus P') \times (V \setminus P')) \), respectively.

An extension \(V \) of \(P \) by \(Q \) is also denoted by

\[V(P, Q; \varphi : P \to P', \psi : Q \to V \setminus P'). \]

We denote by \(i_P \) the identity mapping on \(P \).

Notation 2. For every \(r \subseteq P \times Q \), we always denote by \(\bar{r} \) the set

\[\bar{r} := \{(a, b) \in P \times Q \mid \exists (a', b') \in r \text{ such that } a \leq_P a', b' \leq_Q b}\].

Clearly, \(r \subseteq \bar{r} \).

The theorem below is the main theorem on ideal extensions of ordered sets given in [10].

Theorem (see [10; the theorem]). Let \((P, \leq_P) \) and \((Q, \leq_Q) \) be ordered sets such that \(P \cap Q = \emptyset \). Let \(r \subseteq P \times Q \) and \(V := P \cup Q \). We define a relation \(\leq_V \) on \(V \) as follows: \(\leq_V := \leq_P \cup \leq_Q \). Then \((V, \leq_V) \) is an ordered set, \(P \) is an ideal of \(V \), and

\[V(P, Q, \varphi : P \to P', \psi : Q \to V \setminus P') \]

is an extension of \(P \) by \(Q \).

Conversely, let \((V, \leq_V) \) be an extension of \(P \) by \(Q \). Suppose there exists an \(r \subseteq P \times Q \) such that for the set \(\bar{r} \) defined above, we have

\[\bar{r} = \{(a, b) \in P \times Q \mid \varphi(a) \leq_V \psi(b)\} \]

Then, the set \(P \cup Q \) endowed with the relation \(\leq_V \) mentioned in the first part of the theorem is an ordered set and \((P \cup Q, \leq) = (V, \leq_V) \).

In the sequel, we consider extensions \(V(P, Q; \varphi : P \to P', \psi : Q \to V \setminus P') \) of \(P \) by \(Q \) for which there is an \(r \subseteq P \times Q \) such that for the set \(\bar{r} \) defined in Notation 2, we have

\[\bar{r} = \{(a, b) \in P \times Q \mid \varphi(a) \leq_V \psi(b)\} \]

Such extensions are retract extensions (also equivalent extensions), denoted by \(V(P, Q, \varphi : P \to P', \psi : Q \to V \setminus P', r) \).

Remark (see [10; Proposition 1]) If \(V(P, Q; \varphi : P \to P', \psi : Q \to V \setminus P', r, \leq_V) \) is an extension of \(P \) by \(Q \) and \(r := \{(a, b) \in P \times Q \mid \varphi(a) \leq_V \psi(b)\} \), then \(\bar{r} = r \).

2. The main result

Definition 1. An extension \(V(P, Q; \varphi : P \to P', \psi : Q \to V \setminus P', r) \) of \(P \) by \(Q \) is called a retract extension if there is an isotope mapping

\[\eta : Q \to P \text{ such that } (a, b) \in r \text{ implies } a \leq_P \eta(b). \]

Theorem 1. An extension \(V(P, Q; \varphi : P \to P', \psi : Q \to V \setminus P', r) \) of \(P \) by \(Q \) is a retract extension if and only if there is an isotope mapping

\[g : V \to P \text{ such that } g(x) = \varphi^{-1}(x) \text{ for every } x \in P'. \]

Proof. \(\Rightarrow \). Let \(\eta : Q \to P \) be an isotope mapping such that \((a, b) \in r \Rightarrow a \leq_P \eta(b) \). We consider the mapping

\[g : V \to P | a \to \begin{cases} \varphi^{-1}(a) & \text{if } a \in P', \\ \eta(\psi^{-1}(a)) & \text{if } a \in V \setminus P'. \end{cases} \]

(1) The mapping \(g \) is isotope.

Let \(a, b \in V \), \(a \leq_V b \). Then \(g(a) \leq_P (b) \).