PRODUCTS OF ORTHOPROJECTORS AND HERMITIAN MATRICES

Kh. D. Ikramov* UDC 512

A proof of the following result is presented: A matrix $A \in M_n(\mathbb{C})$ can be represented as a product $A = PH$, where P is an orthoprojector and H is a Hermitian matrix, if and only if A satisfies the equation $A^2 A = A^* A^2$ (the Radjavi-Williams theorem). Unlike the original proof, the new one makes no use of the Crimmins theorem. Bibliography: 2 titles.

1. Let $M_n(\mathbb{C})$ be the set of complex $n \times n$ matrices. The following proposition is Theorem 9 in [1]:

Theorem 1. For a matrix $A \in M_n(\mathbb{C})$ to be representable as a product

$$A = PH,$$ (1)

where P is an orthoprojector and H is a Hermitian matrix, it is necessary and sufficient that A satisfy the equation

$$A^2 A = A^* A^2.$$ (2)

The proof of this theorem given in [1] relates it to the following result, due to T. Crimmins:

Theorem 2. For a matrix $A \in M_n(\mathbb{C})$ to be representable as a product

$$A = PQ,$$ (3)

where P and Q are orthoprojectors, it is necessary and sufficient that A satisfy the equation

$$A^2 = AA^* A.$$ (4)

The aim of this short note is to present an alternative proof of Theorem 1, which does not use Crimmins’s result.

2. The necessity of the condition in Theorem 1 is trivially verified by substituting representation (1) into Eq. (2); then both sides turn out to be equal to the matrix $H^{\dagger} P^\dagger PH$.

In order to prove sufficiency, observe that the assertion of Theorem 1 is invariant with respect to unitary similarity transformations of A. Indeed, if

$$B = Q^* A Q, \quad Q Q^* = I_n,$$ (5)

then

$$B = (Q^* P Q)(Q^* H Q) = P_B H_B,$$ (6)

where, as above, P_B is an orthoprojector, whereas H_B is a Hermitian matrix. By substituting (3) into Eq. (2), we obtain an equation of the same type for B:

$$B^2 B = B^* B^2.$$ (7)

If we set

$$S_A = A^* A,$$ (8)

then (2) can be written as

$$A^* S_A = S_A A.$$ (9)

The above observation allows us to pass to a basis e_1, \ldots, e_n with respect to which the Hermitian matrix (4) is diagonal:

$$S_A = \Lambda \oplus 0_s.$$ (10)

Here, Λ is a diagonal $r \times r$ matrix with positive diagonal entries; $r = \text{rank}_A$, and $s = n - r$.

From representation (6) it is obvious that the vectors e_{r+1}, \ldots, e_n form a basis in the subspace $\ker S_A$. Since $\ker A^* A = \ker A$, the last s columns of A also must be zero. On partitioning A in conformity with (6), we obtain

$$A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & 0 \end{pmatrix}. $$ (11)
From (4) it follows that
\[\Lambda = A_{11}^*A_{11} + A_{21}^*A_{21}. \] (8)

Relation (5) reduces to the equality
\[A_{11}^* \Lambda = \Lambda A_{11}, \] (9)

which implies that \(\Lambda A_{11} \) is a Hermitian matrix. Then
\[A_{11} \Lambda^{-1} = \Lambda^{-1}(\Lambda A_{11}) \Lambda^{-1} \] (10)

also is a Hermitian matrix.

3. Let \(A \) be an arbitrary matrix from \(M_n(\mathbb{C}) \) and let \(P \) be the orthoprojector onto the range \(\mathcal{L} \) of this matrix. Denote the orthoprojector onto the subspace \(\mathcal{L}^\perp \) by \(Q \), where \(Q = I_n - P \). Following [1], define the matrix
\[H = PAP + AQ + QA^*. \] (11)

Then
\[PH = PA = A. \] (12)

Indeed, we have
\[PH = P^2AP + PAQ + (PQ)A^* = PAP + PAQ = PA(P + Q) = PA = A. \]

We apply relations (11) and (12) to the situation described in Theorem 1. The product representation of \(A \) (12) is the desired decomposition (1) if \(H \) is a Hermitian matrix. In other words, \(PAP \) must be a Hermitian matrix.

In the case of matrix (7), the orthoprojector onto its range is given by
\[P = \begin{pmatrix} A_{11} & A_{21} \\ \Lambda^{-1} \end{pmatrix} \Lambda^{-1} \begin{pmatrix} A_{11}^* & A_{21}^* \\ \Lambda^{-1} \end{pmatrix} = \begin{pmatrix} A_{11} \Lambda^{-1}A_{11}^* & A_{11} \Lambda^{-1}A_{21}^* \\ A_{21} \Lambda^{-1}A_{11}^* & A_{21} \Lambda^{-1}A_{21}^* \end{pmatrix}. \]

It follows that
\[PAP = AP = \begin{pmatrix} A_{11}^2 \Lambda^{-1}A_{11}^* & A_{11}^2 \Lambda^{-1}A_{21}^* \\ A_{21}A_{11} \Lambda^{-1}A_{11}^* & A_{21}A_{11} \Lambda^{-1}A_{21}^* \end{pmatrix}. \]

The blocks \(A_{11}^2 \Lambda^{-1}A_{11}^* = A_{11}(A_{11} \Lambda^{-1})A_{11}^* \) and \(A_{21}(A_{11} \Lambda^{-1})A_{21}^* \) are Hermitian because (10) is a Hermitian matrix. The blocks \(A_{11}^2 \Lambda^{-1}A_{21}^* \) and \(A_{21}A_{11} \Lambda^{-1}A_{11}^* \) are the Hermitian adjoints of each other because
\[A_{11}^2 \Lambda^{-1}A_{21}^* = A_{11}(A_{11} \Lambda^{-1})A_{21}^* = A_{11}(\Lambda^{-1}A_{11}^*)A_{21}^* = (A_{21}A_{11} \Lambda^{-1}A_{11}^*)^*. \]

Thus, \(PAP \) is a Hermitian matrix, which implies that \(H \) is a Hermitian matrix as well. Theorem 1 is proved.

Remark. Let \(H_1 \) and \(H_2 \) be Hermitian matrices and let one of them be positive semidefinite. Then the eigenvalues of the product
\[A = H_1 H_2 \]
are real. Moreover (see [2]), the nonzero eigenvalues of \(A \) are semisimple, and the Jordan blocks corresponding to the zero eigenvalue can only be of order one or two.

Under the assumptions of Theorem 1, the zero eigenvalue of \(A \) may be not semisimple already for \(n = 2 \). As an example, consider the Jordan block
\[J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. \]

It satisfies Eq. (2), both sides of which vanish on substituting \(A = J \). In the representation
\[J = PH, \]
the orthoprojector \(P \) is of the form
\[P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \]
whereas as \(H \) one can choose an arbitrary matrix of the form
\[\begin{pmatrix} 0 & 1 \\ 1 & x \end{pmatrix} \]
with a real entry \(x \).

Translated by Kh. D. Ikramov.