A “COMPLEX SOURCE” IN THE 2D REAL SPACE

A. M. Tagirdzhanov

The paper concerns a complexified Green’s function g_* for the 2D Helmholtz equation, which is studied as a nonparaxial model of a Gaussian beam. The function g_* satisfies a certain nonhomogeneous Helmholtz equation in the real space with a source distribution dependent on a choice of branch of a certain complex square root. Various choices of branch cut are discussed, and the corresponding source distribution is calculated. Bibliography: 13 titles.

1. Introduction

Subsequent to asymptotic constructions of solutions of the Helmholtz equation localized for high frequencies, which were called Gaussian beams (for example, see [1]), interest aroused in exact solutions having a similar asymptotic behavior. It was motivated by the fact that asymptotic solutions are suitable only in a small neighborhood of the axis of a beam [2, 3]. Another motive (see [4, 5]) was the quest for statement of diffraction problems without appealing to approximate solutions. As opposite to the asymptotic theory, which easily allows a smooth inhomogeneity of a medium [1], the construction of exact solutions requires constant coefficients (see [6]).

In papers [2, 3], it was considered a complexified Green’s function of the three-dimensional Helmholtz operator

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2,$$

which has the form $G_* = \exp(ikR_*)/R_*$, where $R_* = \sqrt{x^2 + y^2 + (z - ia)^2}$ and $a > 0$ is a free parameter. The function G_*, which is called the field of a complex source (see [2]), for $ka \gg 1$ has a behavior typical of a Gaussian beam. It is important (this was first noted in [2]) that the function R_* is many-valued in \mathbb{R}^3. Its uniquely determined branch (and, thus, a branch of G_*) has a jump on a surface \bar{S} with boundary $\{x^2 + y^2 = a^2, \; z = 0\}$, which is determined by the choice of a cut. The function G_* satisfies a nonhomogeneous Helmholtz equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2\right)G_* = \bar{F}$$

with a source function \bar{F} on the right-hand side, the support of which lies on \bar{S}. Both the form of the function \bar{F} and the asymptotic behavior of G_* depend on the choice of a cut. These questions for the 3D case were studied in detail in [7].

In the present note, we consider a similar question in the 2D case. Interest in the 2D “complex source” can be traced beginning with paper [5], where constructions based on a complexified Green’s function for the 2D Helmholtz operator were applied to solving the diffraction problem of Gaussian beams on a plane interface of media. The 2D case has specific features as compared with the 3D case (see [7]). Here, in distinction to the 3D case, the function g_* has logarithmic branching, and in computing the source function, the regularization of an integral divergent in a power way is not of necessity.

2. A complexified Green’s function

The Green’s function for the two-dimensional Helmholtz equation, which corresponds to a divergent cylindrical wave (for the time dependence $e^{-i\omega t}$), has the form

$$g = -\frac{i}{4}H_0^{(1)}(kr), \quad r = \sqrt{x^2 + z^2},$$

where $H_0^{(1)}$ is the Hankel function. We complexify it, shifting by an imaginary constant in the variable z,

$$g_* = -\frac{i}{4}H_0^{(1)}(kr_*), \quad r_* = \sqrt{x^2 + (z - ia)^2},$$

where $a > 0$. The function g_* is not single-valued in \mathbb{R}^2. It satisfies the nonhomogeneous equation

$$(\Delta + k^2)g_* = F(x, z), \quad \Delta = \partial^2/\partial x^2 + \partial^2/\partial z^2, \quad k > 0$$

with a certain distribution F on the right-hand side. The function of the source F depends on a choice of branch of g_*.

*St. Petersburg State University, St. Petersburg, Russia, e-mail: aztagn@yandex.com.

As in [7], to determine a branch it is convenient to us to consider the plane of the complex variable

\[w = u + iv = x^2 + z^2 - a^2 - 2iaz. \]

(3)

The argument of \(H_0^{(1)}(\gamma) \) in (1) is \(k\sqrt{w} \). At the point \(w = 0 \), the function \(g_* \) has branching of the type \(\ln \sqrt{w} \).

For real \(x \) and \(z \), the variable \(w \) takes values in the domain

\[\Pi = \left\{ \frac{u}{4\alpha^2v^2 - a^2} \right\} \]

(4)
depicted in Fig. 1. To each inner point \(w = u + iv \) of the domain \(\Pi \) there corresponds a one-to-one way a pair of points in \(\mathbb{R}^2 \) symmetric about the axis \(z \). From (3) one can easily obtain their coordinates:

\[x = \pm \sqrt{u + a^2 - (v/2a)^2}, \quad z = -v/2a. \]

(5)

To the boundary \(\partial \Pi \) of the domain there corresponds the axis \(z \). The points \(x = \pm a, z = 0 \) correspond to the branch point \(w = 0 \).

On the \(w \) plane, we draw a cut along a certain curve \(\gamma \). Denote by \(S \) the corresponding curve in \(\mathbb{R}^2 \) with endpoints \(\{x = \pm a, z = 0\} \). Obviously, \(S \) is symmetric about the axis \(z \) and is not necessarily connected. If \(\gamma \) intersects \(\partial \Pi \), then the curve \(S \) intersects the axis \(z \). The function \(g_* \) has a jump on \(S \) and \(\text{supp} F = S \).

In addition to the choice of a cut, we need to choose a branch of \(g_* \). We always choose it in such a way that, as \(z \to +\infty \), \(g_* \) corresponds to the outgoing wave. In [8], it was noted that there exist two essentially different situations of choices of cuts and branches. In one case, we have an outgoing wave that describes a Gaussian beam as \(z = +\infty \) and is damped as \(z = -\infty \). In the other case, we have a beam arriving from \(z = -\infty \) and outgoing to \(z = +\infty \). In [8], these two cases are called a source choice and a beam choice, respectively. We begin by studying the first case.

3. THE CASE OF A SOURCE CHOICE

First we take a cut along the negative real semiaxis. The segment \(S = \{ |x| \leq a, z = 0 \} \) corresponds to this cut. We take the branch of \(\ln \sqrt{w} \) real for \(\text{Re} w > 0, \text{Im} w = 0 \). For such a choice of branch of \(g_* \), we have the boundary values \(-\frac{1}{4} H_0^{(1)}(\pm \sqrt{x^2 - a^2}) \) for \(|x| \leq a, z = \pm 0 \).

3.1. Computation of the source function. We calculate the corresponding function \(F \), considering it in the usual way (see [9]) on the basic functions \(f = f(x, z) \),

\[(F, f) = \iint_{\mathbb{R}^2} g_*(\Delta + k^2)f \, dx \, dz. \]

(6)

Represent (6) in the form of the limit

\[\lim_{\beta \to 0} \lim_{\Omega_{x,\beta} \to 0} \iint_{\Omega_{x,\beta}} g_*(\Delta + k^2) \, f \, dx \, dz, \]

(7)

where the integral is taken over the domain \(\Omega_{x,\beta} \) shown in Fig. 2.