NONLINEAR DIFFERENCE EQUATIONS IN THE SPACES OF BOUNDED TWO-SIDED SEQUENCES

V. Yu. Slyusarchuk

UDC 517.988.6

We establish conditions for the existence of bounded solutions of nonlinear difference equations.

1. Main Functional Spaces and the Object of Investigation

Let \mathbb{Z} be the set of all integers, let \mathbb{R} be the set of all real numbers, let \mathbb{C} be the set of all complex numbers, let E_n, $n \in \mathbb{Z}$, be arbitrary Banach spaces with norms $\| \cdot \|_{E_n}$, $n \in \mathbb{Z}$, and zero vectors 0_n, $n \in \mathbb{Z}$, respectively, let l_p, $1 \leq p \leq \infty$, be Banach spaces of two-sided sequences $x = (x_n)_{n \in \mathbb{Z}}$, where $x_n \in E_n$, $n \in \mathbb{Z}$, with zero element $0 = (0_n)_{n \in \mathbb{Z}}$ for each of which

$$\sum_{n \in \mathbb{Z}} \| x_n \|_{E_n}^p < \infty \quad \text{for} \quad p \in [1, \infty)$$

and $\sup_{n \in \mathbb{Z}} \| x_n \|_{E_n} < \infty$ for $p = \infty$ with the norm

$$\| x \|_{l_p} = \begin{cases} \left(\sum_{n \in \mathbb{Z}} \| x_n \|_{E_n}^p \right)^{1/p} & \text{for} \quad p \in [1, \infty), \\ \sup_{n \in \mathbb{Z}} \| x_n \|_{E_n} & \text{for} \quad p = \infty, \end{cases}$$

respectively, let C_0 be the Banach space of two-sided sequences $x = (x_n)_{n \in \mathbb{Z}}$, $x_n \in E_n$, $n \in \mathbb{Z}$, with zero element $0 = (0_n)_{n \in \mathbb{Z}}$ for each of which $\lim_{n \to \infty} \| x_n \|_{E_n} = 0$ and the norm

$$\| x \|_{C_0} = \sup_{n \in \mathbb{Z}} \| x_n \|_{E_n}$$

(if all spaces E_n, $n \in \mathbb{Z}$, coincide with a Banach space E, then the spaces l_p, $1 \leq p \leq \infty$, and C_0 are denoted by $l_p(\mathbb{Z}, E)$, $1 \leq p \leq \infty$, and $c_0(\mathbb{Z}, E)$, respectively, and let $L(X, Y)$ be a Banach space of linear continuous operators A acting from the Banach space X into the Banach space Y with the norm

$$\| A \|_{L(X, Y)} = \sup_{\| x \|_X = 1} \| Ax \|_Y.$$

Consider a difference equation

$$x_n = A_{n-1}x_{n-1} + F_n(x_{n-1}) + h_n, \quad n \in \mathbb{Z}, \quad (1)$$

National University of Water Industry and Nature Management, Ukraine, 33000, Rivne, 11 Soborna Str.; e-mail: V.Ye.Slyusarchuk@NUWM.rv.ua

where \(h = (h_n)_{n \in \mathbb{Z}} \) is an element of one of the spaces \(l_p \), \(1 \leq p \leq \infty \), or \(C_0 \) and the mappings \(A_n \in L(E_n, E_{n+1}) \) and \(F_n : E_{n-1} \to E_n \), \(n \in \mathbb{Z} \), are such that
\[
\sup_{n \in \mathbb{Z}} \| A_n \|_{L(E_n, E_{n+1})} < \infty,
\]
and, for any number \(r > 0 \),
\[
\sup_{n \in \mathbb{Z}, x \in E_{n-1}, \| x \|_{E_{n-1}} \leq r} \| F_n(x) \|_{E_n} < \infty.
\]

The aim of the present paper is to establish conditions for the existence of solutions of Eq. (1) in the spaces \(l_p \), \(1 \leq p \leq \infty \), and \(C_0 \) (in the case \(h \in l_\infty \) and zero mappings \(F_n \), \(n \in \mathbb{Z} \). this equation is investigated in [1]).

In the investigation of Eq. (1), we use elements of the theory of \(c \)-continuous operators.

2. \(c \)-Continuous and \(c \)-Completely Continuous Operators

Consider operators
\[
P_m : l_\infty \to C_0, \quad m \in \mathbb{N}, \quad \text{and} \quad Q_n : l_\infty \to E_n, \quad n \in \mathbb{Z},
\]
given by the equalities
\[
(P_m x)_n = \begin{cases}
 x_n & \text{for } |n| \leq m, \\
 0_n & \text{for } |n| > m,
\end{cases}
\]
and
\[
Q_n x = x_n.
\]

Let \(\mathcal{X} \) be either the space \(l_p \), \(1 \leq p \leq \infty \), or \(C_0 \). A sequence of elements \(x_k \in \mathcal{X}, \ k \geq 1 \), is called \textit{locally convergent} to \(x \in \mathcal{X} \) as \(k \to \infty \) and denoted as follows:
\[
x_k \xrightarrow{\text{loc, } \mathcal{X}} x \quad \text{as} \quad k \to \infty
\]
if
\[
\sup_{k \geq 1} \| x_k - x \|_{\mathcal{X}} < \infty \quad \text{and} \quad \lim_{k \to \infty} \| P_m(x_k - x) \|_{\mathcal{X}} = 0
\]
for any number \(m \in \mathbb{N} \).

An operator \(\mathcal{H} : \mathcal{X} \to \mathcal{X} \) is called \textit{\(c \)-continuous} if, for any \(x \in \mathcal{X} \) and \(x_k \in \mathcal{X}, \ k \in \mathbb{N} \), such that \(x_k \xrightarrow{\text{loc, } \mathcal{X}} x \) as \(k \to \infty \), the relation
\[
\mathcal{H} x_k \xrightarrow{\text{loc, } \mathcal{X}} \mathcal{H} x \quad \text{as} \quad k \to \infty
\]
is true.