Kinematics analysis and statics of a 2SPS+UPR parallel manipulator

Yi Lu · Bo Hu · Yan Shi

Received: 3 October 2006 / Accepted: 10 April 2007 / Published online: 6 June 2007
© Springer Science+Business Media B.V. 2007

Abstract In this paper, the kinematics and statics of a 2SPS+UPR parallel manipulator are studied systematically. First, its simulation mechanism is created, and formulae for solving the inverse/forward displacement kinematics are derived. Second, formulae for solving inverse/forward velocity and active/constrained forces are derived. Third, formulae for solving inverse/forward acceleration are derived, and a workspace is analysed. The analytic results are verified by its simulation mechanism.

Keywords Parallel manipulator · Kinematics · Active force · Constrained force · Workspace

Abbreviations

- B, m the base and the moving platform
- r_i the active leg and its length
- l_i, L_i the sideline of m and the sideline of B
- P, S the prismatic joint and the spherical joint
- R_1, R_2, R_3 the revolute joints
- U the universal joint with $R_1 \& R_2$
- O, o the center point of B and the center point of m
- $\{m\}$ coordinate o-xyz fixed on m
- $\{B\}$ coordinate O-XYZ fixed on B
- b_i, B_i the vertices of m and the vertices of B
- v_{ri} the input velocity of active leg
- e, E the distances from b_i to o and from B_i to O
- δ_i, f_j the unit vectors of r_i and F_{pj}

The authors would like to acknowledge the financial support of the Natural Sciences Foundation Council of China (NSFC) 50575198 and of Doctoral Fund from National Education Ministry of China No. 20060216006.

Y. Lu (✉) · B. Hu · Y. Shi
Robotics Research Centre, School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
e-mail: luyi@ysu.edu.cn
\[F, T \] the central force and torque applied on \(m \) at \(o \)
\[F_x, F_y, F_z, T_x, T_y, T_z \] the components of \(F \) and \(T \)
\[F_{ai} \] the active forces exerted on \(r_i \)
\[T_d \] the active torque exerted on \(R_1 \)
\[F_{pj}, T_p \] the constraint forces \((j = 1, 2) \), constraint torque
\[J, H \] the Jacobian matrix and Hessian matrix
\[x_l, y_l, z_l, x_m, y_m, z_m, x_n, y_n, z_n \] direction cosine between \(x & X, x & Y, x & Z \)
\[y_l, y_m, y_n \] direction cosine between \(y & X, y & Y, y & Z \)
\[z_l, z_m, z_n \] direction cosine between \(z & X, z & Y, z & Z \)
\[\alpha, \beta, \lambda \] rotational angles of \(m \) about \((Z, X_1, y) \)
\[X_o, Y_o, Z_o \] the position components of \(o \) in \{ \mathcal{B} \}
\[V \] the forward general velocity, \(V = [v \omega]^T \)
\[A \] the forward general acceleration, \(A = [a \varepsilon]^T \)
\[W \] the reachable workspace
\[\parallel, \perp \] parallel and perpendicular constraints

1 Introduction

Currently, various 4-dof (degree of freedom) parallel manipulators have attracted much attention because of their relatively large workspace, simplicity in structure, larger load-bearing capability, and easy control [1–11]. Carricato synthesized a fully isotropic 3T1R 4-dof parallel mechanism with Schoenflies motion (T is a translational motion, and R is a rotational motion) [3]. Fang and Tsai synthesized some 4-dof parallel manipulators by screw theory [4]. Li and Huang revealed some structural characteristics of the 4-dof parallel manipulators by constraint synthesis [5]. Kong and Gosselin [6], Companny [7], and Choi [8] studied various 3T1R 4-dof parallel manipulators with Schoenflies motion. Alizade [9] and Gao [10] synthesized some 4-dof parallel manipulators with parallel active limbs. Chen proposed a 2T2R 4-dof hybrid parallel manipulator [11]. Tanev analyzed forward displacement of a three-leg 4-dof parallel manipulator [12]. Some parallel manipulators possess a redundant motion due to their coupled structure constraint being high sensitive to the manufacture error [13]. From the experiments of two parallel manipulator prototypes with variable dofs at Yanshan University, we also found the redundant motion. By using a constraining leg, the redundant motion of some parallel manipulators with less than 6-dof can be removed effectively. In this aspect, Zhang and Gosselin proposed \(n \)-dof parallel mechanisms with a passive constraining leg [14]. Huang et al. studied a 3-dof Tricept with a UP passive constraining leg and a 3-dof TriVariant with a UP active constraining leg [15]. Gürsel and Bijan analyzed a 3-SPS parallel manipulator with a passive constraining spherical joint [16]. In kinematics, Huang et al. studied the first/second-order kinematic influence coefficient matrices which are proved to be Jacobian/Hessian matrices later [2]. Joshi and Tsai studied Jacobian matrix for mechanisms with less than 6-dof by screw theory [17]. Kim et al. derived a homogeneous Jacobian matrix formulation by three end-effector points [18]. Fang and Huang solved velocity/acceleration of a 3-RPS manipulator by the first/second-order kinematic influence coefficient matrices [19]. Canfield et al. analyzed the velocity of parallel manipulators by truss transformations [20]. Since each of the items in the Jacobian/Hessian matrices is the result of first/second-order partial differentiation, this imposes difficulties on kinematics analysis of 2SPS+UPR parallel manipulator. In addition, the forward pose equations of parallel manipulator generally are the implicit functions and have multi-solutions. Therefore, to solve the forward velocity/acceleration of this parallel manipulator by means of the first/second-order kinematic influence coefficient matrix approach is quite complex.