In Generative Grammar, Binding Theory has traditionally been considered a part of syntax, in the sense that some derivations that would otherwise be interpretable are ruled out by purely formal principles. Thus *He, likes him, would in standard semantic theories yield a perfectly acceptable interpretation; it is only because of Condition B that the sentence is deviant on its coreferential reading. We explore an alternative in which some binding-theoretic principles (esp. Condition C, Condition B, Condition A, a modified version of the Locality of Variable Binding argued for by A. Kehler and D. Fox, and Weak and Strong Crossover) follow from the interpretive procedure – albeit a somewhat nonstandard one. In a nutshell, these principles are taken to reflect the way in which sequences of evaluation are constructed in the course of the interpretation of a sentence. The bulk of the work is done by a principle of Non-Redundancy, which prevents any given object from appearing twice in any sequence of evaluation. An account of split antecedents and non-overlapping-reference effects is included in the analysis, and a detailed implementation of a large part of the theory is given in an Appendix.

1. Overview

1.1. Syntactic Accounts of Binding Theory

In Generative Grammar, Binding Theory has traditionally been considered a part of syntax, in the sense that certain structures that would otherwise be interpretable semantically are ruled out by purely formal constraints. In the account offered in Chomsky (1981), syntactic structures come equipped with indices whose intended semantics is to encode
Certain configurations are then ruled out by formal constraints on binding. As in formal logic, the relation ‘\(a\) binds \(b\)’ holds just in case (i) \(a\) and \(b\) bear the same index \(k\), (ii) \(b\) is in the scope of \(a\) (is c-commanded by) \(a\), and (iii) there is no other element \(a'\) with index \(k\) such that \(a'\) is in the scope of \(a\), and \(b\) is in the scope of \(a'\) (for otherwise \(a'\) rather than \(a\) would bind \(b\)). Binding is then subject to the following (simplified) constraints, where the ‘local domain’ of an element is – very roughly – its clause:

(1) **Condition A**: A reflexive pronoun must be bound in its local domain.
 a. John\(_1\) likes himself\(_1\)
 b. *[John\(_1\)’s mother]\(_2\) likes himself\(_1\)
 c. *John\(_1\) thinks that Mary\(_2\) likes himself\(_1\)

(2) **Condition B**: A non-reflexive pronoun cannot be bound in its local domain.
 a. *John\(_1\) likes him\(_1\)
 b. [John\(_1\)’s mother]\(_2\) likes him\(_1\)
 c. John\(_1\) thinks that Mary\(_2\) likes him\(_1\)

(3) **Condition C**: A proper name or a definite description cannot be bound (at all).
 a. ?? John\(_1\) likes John\(_1\)
 b. *He\(_1\) likes John\(_1\)
 c. ? John\(_1\) thinks that Mary\(_2\) likes John\(_1\)

An additional principle constrains configurations in which a quantificational element can take scope over (or ‘cross over’) a pronoun. One possible statement is the following:

(4) **(Weak) Crossover Constraint**: A pronoun cannot be bound by an element that is in a non-argument position (= an \(A’\)-position).\(^2\)

1. In Chomsky’s ‘Minimalist Program’, indices are claimed not to exist in the syntax, and as a result binding-theoretic principles are taken to apply in the interpretive component – a move that may be consistent with the present enterprise.

2. This is by no means an unexceptionable generalization. There are at least two kinds of problems with it:
 (i) It appears that a pronoun can be bound from a non-argument position, as long as the binder is non-quantificational, for instance in *John, his mother likes*. This refinement is predicted by our final account, as discussed in section 5.1.3
 (ii) There are cases in which a pronoun is bound by a quantifier which is in a non-argument position, as in *Every boy’s mother likes him*, whose Logical Form must be something like \([\text{Every boy}], [t_i, \text{mother}'] \text{ likes him}'\). For these cases, Büring (2003b) has proposed an E-type analysis in which *him* goes proxy for a definite description such as *the boy in s*, where \(s\) is a situation variable bound by a quantifier introduced by *every boy*. If such an analysis is feasible, it can be adapted to the present framework.