On Weak*-Convergence in $H^1_L(\mathbb{R}^d)$

Luong Dang Ky

Abstract Let $L = -\Delta + V$ be a Schrödinger operator on \mathbb{R}^d, $d \geq 3$, where V is a nonnegative function, $V \neq 0$, and belongs to the reverse Hölder class $RH_{d/2}$. In this paper, we prove a version of the classical theorem of Jones and Journé on weak*-convergence in the Hardy space $H^1_L(\mathbb{R}^d)$.

Keywords Weak*-convergence · Schrödinger operator · Hardy space · VMO

Mathematics Subject Classifications (2010) 42B35 · 46E15

1 Introduction

A famous and classical result of Fefferman [7] states that the John-Nirenberg space $BMO(\mathbb{R}^d)$ is the dual of the Hardy space $H^1(\mathbb{R}^d)$. It is also well-known that $H^1(\mathbb{R}^d)$ is one of the few examples of separable, nonreflexive Banach space which is a dual space. In fact, let $VMO(\mathbb{R}^d)$ denote the closure of the space $C^\infty_c(\mathbb{R}^d)$ in $BMO(\mathbb{R}^d)$, where $C^\infty(\mathbb{R}^d)$ is the set of C^∞-functions with compact support. Coifman and Weiss showed in [1] that $H^1(\mathbb{R}^d)$ is the dual space of $VMO(\mathbb{R}^d)$, which gives to $H^1(\mathbb{R}^d)$ a richer structure than $L^1(\mathbb{R}^d)$. For example, the classical Riesz transforms $\nabla(-\Delta)^{-1/2}$ are not bounded on $L^1(\mathbb{R}^d)$, but are bounded on $H^1(\mathbb{R}^d)$. In addition, the weak*-convergence is true in $H^1(\mathbb{R}^d)$, which is useful in the application of Hardy spaces to compensated compactness (see [2]). More precisely, in [9], Jones and Journé proved the following.
Theorem J–J Suppose that \(\{ f_j \} \geq 1 \) is a bounded sequence in \(H^1(\mathbb{R}^d) \), and that \(f_j(x) \to f(x) \) for almost every \(x \in \mathbb{R}^d \). Then, \(f \in H^1(\mathbb{R}^d) \) and \(\{ f_j \} \geq 1 \) weak*-converges to \(f \), that is, for every \(\varphi \in VMO(\mathbb{R}^d) \), we have

\[
\lim_{j \to \infty} \int_{\mathbb{R}^d} f_j(x) \varphi(x) \, dx = \int_{\mathbb{R}^d} f(x) \varphi(x) \, dx.
\]

The aim of this paper is to prove an analogous version of the above theorem in the setting of function spaces associated with Schrödinger operators.

Let \(L = -\Delta + V \) be a Schrödinger differential operator on \(\mathbb{R}^d \), \(d \geq 3 \), where \(V \) is a nonnegative potential, \(V \neq 0 \), and belongs to the reverse Hölder class \(RH_{d/2} \). In the recent years, there is an increasing interest on the study of the problems of harmonic analysis associated with these operators, see for example [4–6, 10, 11, 13, 14]. In [6], Dziubański and Zienkiewicz considered the Hardy space \(H^1_L(\mathbb{R}^d) \) as the set of functions \(f \in L^1(\mathbb{R}^d) \) such that \(\| f \|_{H^1_L} := \| M_L f \|_{L^1} < \infty \), where \(M_L f(x) := \sup_{t > 0} |e^{-tL} f(x)| \). There, they characterized \(H^1_L(\mathbb{R}^d) \) in terms of atomic decomposition and in terms of the Riesz transforms associated with \(L \). Later, in [5], Dziubański et al. introduced a \(BMO \)-type space \(BMO_L(\mathbb{R}^d) \) associated with \(L \), and established the duality between \(H^1_L(\mathbb{R}^d) \) and \(BMO_L(\mathbb{R}^d) \). Recently, Deng et al. [4] introduced and developed new \(\dot{V}MO \)-type function spaces \(\dot{V}MO_A(\mathbb{R}^d) \) associated with some operators \(A \) which have a bounded holomorphic functional calculus on \(L^2(\mathbb{R}^d) \). When \(A = L \), their space \(\dot{V}MO_L(\mathbb{R}^d) \) is just the set of all functions \(f \) in \(BMO_L(\mathbb{R}^d) \) such that \(\gamma_1(f) = \gamma_2(f) = \gamma_3(f) = 0 \), where

\[
\begin{align*}
\gamma_1(f) &= \lim_{r \to 0} \left(\sup_{x \in \mathbb{R}^d, r \leq 1} \left(\frac{1}{|B(x, t)|} \int_{B(x, t)} |f(y) - e^{-sL} f(y)|^2 \, dy \right)^{1/2} \right), \\
\gamma_2(f) &= \lim_{R \to \infty} \left(\sup_{x \in \mathbb{R}^d, r \geq R} \left(\frac{1}{|B(x, t)|} \int_{B(x, t)} |f(y) - e^{-sL} f(y)|^2 \, dy \right)^{1/2} \right), \\
\gamma_3(f) &= \lim_{R \to \infty} \left(\sup_{B(x, t) \cap B(0, R) = \emptyset} \left(\frac{1}{|B(x, t)|} \int_{B(x, t)} |f(y) - e^{-sL} f(y)|^2 \, dy \right)^{1/2} \right).
\end{align*}
\]

The authors in [4] further showed that \(H^1_L(\mathbb{R}^d) \) is in fact the dual of \(\dot{V}MO_L(\mathbb{R}^d) \), which allows us to study the weak*-convergence in \(H^1_L(\mathbb{R}^d) \). This is useful in the study of the Hardy estimates for commutators of singular integral operators related to \(L \), see for example Theorem 7.1 and Theorem 7.3 of [10].

Our main result is the following theorem.

Theorem 1.1 Suppose that \(\{ f_j \} \geq 1 \) is a bounded sequence in \(H^1_L(\mathbb{R}^d) \), and that \(f_j(x) \to f(x) \) for almost every \(x \in \mathbb{R}^d \). Then, \(f \in H^1_L(\mathbb{R}^d) \) and \(\{ f_j \} \geq 1 \) weak*-converges to \(f \), that is, for every \(\varphi \in VMO_L(\mathbb{R}^d) \), we have

\[
\lim_{j \to \infty} \int_{\mathbb{R}^d} f_j(x) \varphi(x) \, dx = \int_{\mathbb{R}^d} f(x) \varphi(x) \, dx.
\]

Throughout the whole paper, \(C \) denotes a positive geometric constant which is independent of the main parameters, but may change from line to line. In \(\mathbb{R}^d \), we denote by \(B = B(x, r) \) an open ball with center \(x \) and radius \(r > 0 \). For any measurable set \(E \), we denote by \(|E| \) its Lebesgue measure.