Consider two numberings \(\nu \) and \(\mu \) of some nonempty at most countable set \(S \). Say that \(\nu \) is \(e \)-reducible to \(\mu \) if there exists a mapping \(\Phi \) such that

\[(\forall s \in S)(\nu^{-1}(s) = \Phi(\mu^{-1}(s))).\]

A mapping \(\Phi : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \) is called an \(e \)-operator if there exists a recursively enumerable set (RES) \(W \) such that

\[(\forall X \subseteq \mathbb{N})(\Phi(X) = \{x : (\exists y)(\langle x, y \rangle \in W \land D_y \subseteq X)\}),\]

where \(\langle x, y \rangle \) is the Cantor index of the pair \((x, y) \) of nonnegative integers, \(D_y \) is the finite subset of the set \(\mathbb{N} \) of nonnegative integers with the canonical index \(y \), and \(\mathcal{P}(\mathbb{N}) \) is the set of all subsets of \(\mathbb{N} \).

A mapping \(\Phi : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \) is called a \(p \)-operator if there exists a general recursive function (GRF) \(f \) such that

\[(\forall X \subseteq \mathbb{N})(\Phi(X) = \{x : (\exists y)(y \in D_{f(x)} \land D_y \subseteq X)\}).\]

Below in the case of \(e \)-reducibility of numberings we will identify the \(e \)-operator \(\Phi \) with the RES \(W \), meaning that \(\nu \) is \(e \)-reducible to \(\mu \) by \(W \). Similarly in the case of \(p \)-reducibility of numberings we will identify the \(p \)-operator \(\Phi \) with the GRF \(f \), meaning that \(\nu \) is \(e \)-reducible to \(\mu \) by \(f \).

The classes of \(e \)-equivalent (computable) numberings of some set \(S \) form \(e \)-degrees. Equipped with the partial order induced by the relation \(\leq_e \), they form an upper semilattice \(\mathcal{L}_e(S) \) of (computable) numberings with the top element \(\mu(x) \oplus \nu(x) \). Similarly we define the \(p \)-degrees of numberings of \(S \) and the upper semilattice \(\mathcal{L}_p(S) \). It is known that \(p \)-reducibility is “stronger” than \(e \)-reducibility. Thus, an \(e \)-degree consists in general of several \(p \)-degrees. The corresponding results are presented in the article [1], describing the semilattices \(\mathcal{L}_e(\mathcal{F}) \) for finite families \(\mathcal{F} \) of RES’s and exhibiting an example of a computable family of RES’s with no \(e \)-principal numbering.

A family \(\mathcal{R} \) of RES’s is called discrete if there exists a family \(\mathcal{F} \) of finite RES’s such that

1. given \(D \in \mathcal{F} \) there exists at most one \(R \in \mathcal{R} \) with \(D \subseteq R \);
2. given \(R \in \mathcal{R} \) there exists \(D \in \mathcal{F} \) with \(D \subseteq R \).

A discrete family \(\mathcal{R} \) of RES’s is called effectively discrete if for some GRF \(f \) there exists a strongly enumerable family \(\mathcal{F} \) of finite sets such that \(\mathcal{F} = \{D_{f(0)}, D_{f(1)}, \ldots \} \).

It is proved in [2] that all computable numberings of an effectively discrete family \(\mathcal{R} \) of RES’s are \(m \)-equivalent and form the trivial semilattice \(\mathcal{L}_e(\mathcal{R}) \).

Proposition 1. There exists a discrete but not effectively discrete family \(\mathcal{R} \) of finite sets such that the semilattice \(\mathcal{L}_e(\mathcal{R}) \) is a singleton.

Proof. Take some nonrecursive RES \(R \) and consider the family \(\mathcal{R} = \{R_0, R_1, \ldots, R_n, \ldots\} \) of pairwise disjoint sets

\[R_0 = [0, a_0], R_1 = (a_0, a_1], \ldots, R_n = (a_{n-1}, a_n], \ldots,\]
where \(\{a_n\}_{n \geq 0} \) is the direct numbering of the complement to \(R \). The family \(\mathcal{R} \) is computable.

Indeed, the numbering
\[
\nu(x) = \begin{cases} [0, a_0] & \text{for } x \leq a_0, \\ (a_n, a_{n+1}] & \text{for } x \in (a_n, a_{n+1}] \end{cases}
\]
is computable. In order to verify this, enumerate the nonrecursive RES \(R \) step-by-step. At step \(t = 1 \) put \(\nu^1(x) = \{x\} \). If at step \(t \geq 1 \) some elements \(a \) and \(b \) turn out to be the minimal and maximal elements of the numbering \(\nu^t(x) \), and the elements \(a - 1 \) or \(b \) in \(R \) have been computed before this step, then put
\[
\nu^{t+1}(x) = \nu^t(x) \cup \{a - 1\} \text{ or } \nu^{t+1}(x) = \nu^t(x) \cup \{b + 1\}.
\]

Let us now address the question whether \(\mathcal{R} \) is effectively discrete.

Given \(\mathcal{R} \), suppose that there exists a strongly computable family \(\mathcal{F} \) of finite sets confirming the effective discreteness of \(\mathcal{R} \). Since \(\mathcal{R} \) consists of pairwise disjoint sets, we may assume that all sets in \(\mathcal{F} \) are singletons. This means that there exists a computable sequence \(a_0, a_1, \ldots \) such that for every \(x \in R \) there exists a unique index \(n \in \mathbb{N} \) with \(a_n \in \nu(x) \). Enumerate the elements of \(\nu(x) \) until for \(a_n \) we find \(a_k, a_l, b_k, b_l, y, \) and \(z \) such that \(a_k \leq a_l \) and \(b_k \leq b_l \). Suppose computed in \(R \) at some step \(t \) the elements \(a_k \in \nu^t(y), b_k \in \nu^t(y), a_k \in \nu^t(z), b_k \in \nu^t(z), a_n \in (b_k, b_l), \) and also all elements of \((b_k, b_l) \) but \(w \). It is clear that \(w \in \mathbb{N} \setminus R \).

Thus, the complement to the nonrecursive RES \(R \) turns out to be a RES, which by Post’s theorem contradicts the nonrecursiveness of the RES \(R \).

Finally, take another computable numbering \(\mu \) of \(\mathcal{R} \). For all \(x \geq 0 \) enumerate the elements of the numberings \(\nu(x) \) and \(\mu(x) \) until we find some \(y \) with \(\mu(x) \cap \nu(y) \neq \emptyset \). It is obvious that \(\mu(x) = \nu(y) \) and the GRF \(f(x) = y \) reduces \(\mu \) to \(\nu \). In this case, every numbering \(\mu \) of \(\mathcal{R} \) is positive because all sets in \(\mathcal{R} \) are pairwise disjoint. More exactly, the relation \(x y \Leftrightarrow \mu(x) = \nu(y) \) is a positive equivalence. □

Consider some family \(\mathcal{F} \) of GRFs. Call a limit point for \(\mathcal{F} \) some GRF \(f \) such that for every \(n \in \mathbb{N} \) the family \(\mathcal{F} \) contains some GRF \(g \) with \((\forall x \leq n)(f(x) = g(x)) \). If \(\mathcal{F} \) contains no limit points then it is discrete.

Proposition 2. Given some nonrecursive RES \(R \) we can define a discrete family \(\mathcal{F} \) of GRFs such that \(\mathcal{L}_e(\mathcal{F}) \) contains the top element and countably many minimal elements.

Proof. Take some GRF \(f \) that enumerates \(R \) without repetitions. For all \(n \in \mathbb{N} \) put
\[
\nu_{2n}(x) = n,
\]
\[
\nu_{2n+1}(x) = \begin{cases} n & \text{if } x = 0 \text{ or } n \notin \{f(y) : y \leq x\}, \\ 0 & \text{otherwise.} \end{cases}
\]

Here \(\nu_n(x) \) is the value of \(f \) with index \(n \) computed at \(x \). It is clear that the numbering \(\nu \) is a computable numbering of some discrete family \(\mathcal{F} \) of GRFs that is not positive. Otherwise \(R \) would be recursive because \(\nu \in \mathcal{R} \Leftrightarrow \nu_{2n} = \nu_{2n+1} \).

Given another numbering \(\mu \) of \(\mathcal{F} \) it follows that \(\mu \leq_e \nu \) by the \(e \)-operator \(\Phi \) consisting of the indices
\[
(1) \ (x, y) \text{ such that } D_y = \{2\mu_x(0)\};
\]
\[
(2) \ (x, z) \text{ such that } D_z = \{2\mu_x(0) + 1\}.
\]

Naturally, this is so under the assumption that there exists some index \(m \) with \(\mu_x(m) = 0 \). Thus, the numbering \(\nu \) of \(\mathcal{F} \) will be an \(e \)-principal numbering, and the \(e \)-degree of \(\nu \) is the top element of \(\mathcal{L}_e(\mathcal{F}) \).

On the other hand, the semilattice \(\mathcal{L}_m(\mathcal{F}) \) of all \(m \)-equivalent degrees of computable numberings of \(\mathcal{F} \) is nontrivial because \(\mathcal{F} \) always admits a single-valued computable numbering. Thus, the family \(\mathcal{F} \) admits countably many pairwise \(m \)-incomparable single-valued numberings [3], which are pairwise \(m \)-incomparable because \(\mu \leq_e \nu, \mu =_m \nu, \) and \(\nu \) is a positive numbering. □

Recall that \(\mathcal{L}_m(\mathcal{F}) \) is a nontrivial semilattice with no \(m \)-principal numbering [3]. There exist computable numberings of recursively enumerable sets that are \(e \)-equivalent to noncomputable numberings. Thus, of primary interest are the examples of computable numberings that are not positive and to which some computable numberings \(e \)-reduce.