FINITE GROUPS WITH \mathcal{F}-SUBNORMAL CONDITIONS

S. Li and N. Du

UDC 512.54

Abstract: Let \mathcal{F} be a subgroup-closed saturated formation. A finite group G is called an \mathcal{F}_{pc}-group provided that each subgroup X of G is \mathcal{F}-subabnormal in the \mathcal{F}-subnormal closure of X in G. Let \mathcal{F}_{pc} be the class of all \mathcal{F}_{pc}-groups. We study some properties of \mathcal{F}_{pc}-groups and describe the structure of \mathcal{F}_{pc}-groups when \mathcal{F} is the class of all soluble π-closed groups, where π is a given nonempty set of prime numbers.

Keywords: \mathcal{F}-subnormal subgroup, \mathcal{F}-projector, \mathcal{F}-covering subgroup, \mathcal{F}_{pc}-group

1. Introduction. Let \mathcal{F} be a saturated formation and let G be a finite group. We let \mathcal{N} denote the formation of nilpotent groups. In this article we study some interesting properties of \mathcal{F}_{pc}-groups. We recall the following definitions:

Definition 1 [1]. A maximal subgroup M of G is \mathcal{F}-normal in G provided that $G/\text{core}_G(M) \in \mathcal{F}$ where $\text{core}_G(M)$ is the core of M in G; otherwise M is called \mathcal{F}-abnormal in G.

Definition 2 [1]. A subgroup X of G is called \mathcal{F}-subnormal in G if, either $X = G$ or there exists a maximal chain:

$$X = U_0 < U_1 < \cdots < U_l = G$$

such that U_{i-1} is \mathcal{F}-normal in U_i for all $i = 1, 2, \ldots, l$; and X is said to be \mathcal{F}-subabnormal in G if H is \mathcal{F}-abnormal in K whenever $X \leq H < \cdot K \leq G$ where H is maximal in K.

By definition, G is both \mathcal{F}-subnormal and \mathcal{F}-subabnormal in G.

Definition 3 [1]. Let F be an \mathcal{F}-subgroup of G.

1. F is called an \mathcal{F}-projector if FH/H is a maximal \mathcal{F}-subgroup of G/H for all normal subgroups H of G.

2. F is called an \mathcal{F}-covering subgroup if $F \leq H$ implies $H = H^\mathcal{F}F$.

We denote by $\text{Proj}_\mathcal{F}(G)$ the set of all \mathcal{F}-projectors of G and by $\text{Cov}_\mathcal{F}(G)$, the set of all \mathcal{F}-covering subgroups of G.

3. The intersection of all normal subgroups N of G satisfying $G/N \in \mathcal{F}$ is called the \mathcal{F}-residual of G and denoted by $G^\mathcal{F}$.

Definition 4. Let $\Sigma(G)$ denote the set of all minimal supplements L to $G^\mathcal{F}$ in G, that is, $G = G^\mathcal{F}L$ but $G > G^\mathcal{F}B$ for every proper subgroup B of L.

In [2], Förster defined \mathcal{F}_{an}-groups to be the finite groups in which every subgroup is either \mathcal{F}-subnormal or \mathcal{F}-subabnormal. The groups in \mathcal{F}_{an} were studied in [2–4] for some special \mathcal{F}. Shirong Li in [5] generalized the class of \mathcal{F}_{an}-groups by defining \mathcal{F}_{pc}-groups.

Definition 5 [5]. For a subgroup X of G, $S_G(X)$ denotes the \mathcal{F}-subnormal closure of X in G, the intersection of \mathcal{F}-subnormal subgroups of G containing X.

Definition 6 [5]. A group G is called an \mathcal{F}_{pc}-group if every subgroup X of G is \mathcal{F}-subabnormal in $S_G(X)$. We denote by \mathcal{F}_{pc} the class of all \mathcal{F}_{pc}-groups.

Remarks. (1) $\mathcal{F}_{an} \subseteq \mathcal{F}_{pc}$.

The authors were supported by the NSF of the Guangxi Autonomous Region (Grant 0249001) and the NSF of the Fujian Province of China (Grant S0650036).
(2) For two saturated formations \mathcal{F} and \mathcal{H} satisfying $\mathcal{F} \subseteq \mathcal{H}$, in general, we have $\mathcal{F}_{pc} \subseteq \mathcal{H}_{pc}$.

(3) The concept of \mathcal{F}_{pc}-groups provides many interesting classes of groups. For example, the class \mathcal{N}_{pc} consists of the groups G whose every subgroup X is abnormal in the subnormal closure of X in G (see Section 3). On the other hand, in [6] the following concept was introduced: A subgroup X of G is said to be an NE-subgroup if $N_G(X) \cap X^G = X$ where X^G is the normal closure of X in G. The groups whose subgroups are NE-subgroups belong to \mathcal{N}_{pc} and it is showed by Yangming Li in [7] that these groups coincide with soluble T-groups (the groups in which the normality is transitive). Therefore, \mathcal{N}_{pc}-groups is a generalization of soluble T-groups. Another example is the case when \mathcal{F} is the class of p-nilpotent groups, which was investigated in [5].

2. The main results.

Lemma 1 [2]. Let \mathcal{F} be a subgroup-closed saturated formation. Then

(1) If H is an \mathcal{F}-subnormal subgroup of G and $H \triangleleft K \leq G$ then H is also \mathcal{F}-subnormal in K.

(2) If H is \mathcal{F}-subnormal in G and $N \triangleleft G$ then HN/N is \mathcal{F}-subnormal in H/G.

Lemma 2 [8]. Let \mathcal{F} be a saturated formation and $F \in \Sigma(G)$. Then

(1) F is an \mathcal{F}-subgroup of G.

(2) $F \in \text{Cov}_{\mathcal{F}}(G)$ if and only if F is \mathcal{F}-subabnormal in G.

Lemma 3. Let \mathcal{F} be a saturated formation. If $\Sigma(G) \subseteq \text{Proj}_{\mathcal{F}}(G)$ then $\text{Proj}_{\mathcal{F}}(G) = \Sigma(G) = \text{Cov}_{\mathcal{F}}(G)$.

Proof. We know that every $F \in \text{Proj}_{\mathcal{F}}(G)$ satisfies $G = FG^\mathcal{F}$, and so F contains a minimal supplement to $G^\mathcal{F}$ in G, say F_1. By hypothesis, $F_1 \in \text{Proj}_{\mathcal{F}}(G)$. In particular, $F = F_1$, and hence $\text{Proj}_{\mathcal{F}}(G) = \Sigma(G)$.

Since $\text{Cov}_{\mathcal{F}}(G) \subseteq \text{Proj}_{\mathcal{F}}(G)$, it suffices to show that $\text{Proj}_{\mathcal{F}}(G) \subseteq \text{Cov}_{\mathcal{F}}(G)$ to complete the proof of the lemma.

Let F be a member of $\text{Proj}_{\mathcal{F}}(G)$. We must show that $H = H^\mathcal{F}F$ whenever $F \leq H \leq G$. First of all, we observe that $G = G^\mathcal{F}F = G^\mathcal{F}H$. Hence, $H/H \cap G^\mathcal{F} \cong G/G^\mathcal{F} \in \mathcal{F}$, which indicates that $H^\mathcal{F} \leq G^\mathcal{F} \cap H$.

Let K be a minimal supplement of $H^\mathcal{F}$ in H. Then $K \in \mathcal{F}$ by Lemma 2(1), and $G = HG^\mathcal{F} = (KH^\mathcal{F})G^\mathcal{F} = KG^\mathcal{F}$. We thus can find a minimal supplement $Y \leq K$ to $G^\mathcal{F}$ in G. By hypothesis, Y belongs to $\text{Proj}_{\mathcal{F}}(G)$. So, $K = Y$, and it follows that K is a minimal supplement of $G^\mathcal{F}$ in G, which shows $K \cap G^\mathcal{F} \leq \Phi(K)$.

We now claim that $\Phi(K)H^\mathcal{F}/H^\mathcal{F} \subseteq \Phi(H/H^\mathcal{F})$. Indeed, if $H = H^\mathcal{F}$ then $K = 1$ and the claim is trivial. Assume that $H^\mathcal{F} < H$. Let M be any maximal subgroup of H such that M contains $H^\mathcal{F}$. Put $K_0 = K \cap M$. Then $M = M \cap H^\mathcal{F}K = H^\mathcal{F}(M \cap K) = H^\mathcal{F}K_0$. If $K_0 \triangleleft K_1 < K$ for some subgroup K_1 of H then $M = K_1H^\mathcal{F}$, and so $K_1 \triangleq K_1 \cap K_0H^\mathcal{F} = K_0\langle K_1 \cap H^\mathcal{F} \rangle \leq K \cap M = K_0$; a contradiction. We thus see that K_0 is maximal in K. So, $\Phi(K) \leq K_0 \leq M$, which shows that $\Phi(K)H^\mathcal{F}/H^\mathcal{F}$ lies in every maximal subgroup of $H/H^\mathcal{F}$. The claim holds.

Now, $H \cap G^\mathcal{F}/H^\mathcal{F} = (KH^\mathcal{F}) \cap G^\mathcal{F}/H^\mathcal{F}$

$$= H^\mathcal{F}(K \cap G^\mathcal{F})/H^\mathcal{F} \leq \Phi(K)H^\mathcal{F}/H^\mathcal{F} \leq \Phi(H/H^\mathcal{F}),$$

and so

$$H/H^\mathcal{F} = (FG^\mathcal{F})\cap H/H^\mathcal{F} = F(G^\mathcal{F} \cap H)/H^\mathcal{F}$$

$$= FH^\mathcal{F}/H^\mathcal{F} \cdot G^\mathcal{F} \cap H/H^\mathcal{F} \leq FH^\mathcal{F}/H^\mathcal{F} \cdot \Phi(H/H^\mathcal{F}) \leq H/H^\mathcal{F},$$

which yields $H = FH^\mathcal{F}$ as desired. The proof is now complete.

Lemma 4. Let \mathcal{F} be a subgroup-closed saturated formation. Then the following are equivalent:

(1) $G \in \mathcal{F}_{pc}$;

(2) for every subgroup $X \leq G$, X is \mathcal{F}-subabnormal in $S_G(X)$;

(3) for every \mathcal{F}-subgroup $F \subseteq G$, F is \mathcal{F}-subabnormal in $S_G(F)$.

Proof. (1) \Rightarrow (2): If $G \in \mathcal{F}_{pc}$ then (2) holds by definition.