On g-s-supplemented subgroups of finite groups

Wenbin GUO¹,³, Fengyan XIE²,³, Yi LU³

1 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
2 Mathematics and Information Engineering Department, Anyang Normal University, Anyang 455000, China
3 Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Abstract A subgroup H of a group G is said to be g-s-supplemented in G if there exists a subgroup K of G such that HK ⊴ G and H ∩ K ≤ H_sG, where H_sG is the largest s-permutable subgroup of G contained in H. By using this new concept, we establish some new criteria for a group G to be soluble.

Keywords Finite group, g-s-supplemented subgroup, Sylow subgroup, soluble group

MSC 20D10, 20D15, 20D20

1 Introduction

All groups in this paper are finite.

A subgroup H of a group G is said to be complemented in G if G has a subgroup K of G such that HK = G and H ∩ K = 1. A subgroup H of a group G is said to be supplemented in G if there exists a subgroup K of G such that HK = G. Obviously, a complemented subgroup is a special supplemented subgroup. It is well known that the supplemented subgroups play an important role in the study of finite groups. For example, Hall [6] proved that a group G is soluble if and only if every Sylow subgroup of G is complemented in G. Kegel [7,9] proved that a group G is soluble if every maximal subgroup of G has a cyclic supplement in G or if some nilpotent subgroup of G has a nilpotent supplement in G. Recently, some new special supplemented subgroups were introduced. For example, a group is said to be c-supplemented in G [12] if there exists a subgroup K of G such that

* Received November 7, 2008; accepted January 25, 2010

Corresponding author: Wenbin GUO, E-mail: wbguokd@126.com
\(HK = G \) and \(H \cap K \leq H_G \), where \(H_G \) is the largest normal subgroup of \(G \) contained in \(H \). For a formation \(\mathcal{F} \), a subgroup \(H \) of a group \(G \) is said to be \(\mathcal{F} \)-supplemented in \(G \) [4] if there exists a subgroup \(K \) such that \(HK = G \) and \((H \cap K)H_G/H_G \) is \(\mathcal{F} \)-hypercentral in \(G/H_G \). A subgroup \(H \) is said to be weakly \(s \)-supplemented in \(G \) [11] if there exists a subgroup \(K \) of \(G \) such that \(HK = G \) and \(H \cap K \leq H_{sG} \), where \(H_{sG} \) is the largest \(s \)-permutable subgroup of \(G \) contained in \(H \) (note that a subgroup \(H \) of \(G \) is said to be \(s \)-permutable in \(G \) if \(HP = PH \) for any Sylow subgroup \(P \) of \(G \)). A subgroup \(H \) is said to be \(s \)-embedded in \(G \) if \(H \) has a normal subgroup \(K \) and an \(s \)-permutable subgroup \(C \) such that \(T \cap H \leq H_{sG} \) and \(HT = C \). By using the above special supplemented subgroups, people have obtained a series of interesting results (see Refs. [4,5,11,12]). Now, we consider a generalizer supplemented subgroup and give the following concept.

Definition 1.1 A subgroup \(H \) of a group \(G \) is said to be \(g \)-s-supplemented in \(G \) if there exists a subgroup \(K \) of \(G \) such that \(HK \leq G \) and \(H \cap K \leq H_{sG} \), where \(H_{sG} \) is the largest \(s \)-permutable subgroup of \(G \) contained in \(H \).

It is easy to see that every \(c \)-supplemented subgroup and every weakly \(s \)-supplemented subgroup is \(g \)-s-supplemented. However, the following examples show that the converse is not true.

Example 1.2 Let \(G = A \times B \), where \(A \) is a cyclic group of order 5 and \(B = \langle \alpha \rangle \), where \(\alpha \in \text{Aut}(A) \) with \(|\alpha| = 4 \). Since \(|G : \langle \alpha^2 \rangle A| = 2\), \(\langle \alpha^2 \rangle A \) is normal in \(G \). Then by \(\langle \alpha^2 \rangle \cap A = 1 \), we see that \(\langle \alpha^2 \rangle \) is \(g \)-s-supplemented in \(G \). However, \(\langle \alpha^2 \rangle \) is not weakly \(s \)-supplemented in \(G \). In fact, let \(\langle \alpha^2 \rangle \) be weakly \(s \)-supplemented in \(G \), and assume that \(K \) is a subgroup of \(G \) such that

\[
K \langle \alpha^2 \rangle = G, \quad K \cap \langle \alpha^2 \rangle \leq \langle \alpha^2 \rangle_{sG}.
\]

Then, clearly \(\langle \alpha^2 \rangle_{sG} = 1 \) or \(\langle \alpha^2 \rangle_{sG} = \langle \alpha^2 \rangle \). If \(\langle \alpha^2 \rangle_{sG} = 1 \), then \(\langle \alpha^2 \rangle \) is complemented in \(G \) and hence \(\langle \alpha^2 \rangle \) is complemented in \(B \), which contradicts the fact that \(B \) is a cyclic group. Assume that \(\langle \alpha^2 \rangle = \langle \alpha^2 \rangle_{sG} \). Then \(\langle \alpha^2 \rangle \) is an \(s \)-permutable subgroup of \(G \). If it follows that \(\langle \alpha^2 \rangle \leq O_2(G) \) (see the Lemma 2.2 below). This contradicts the fact that \(O_2(G) = 1 \). Therefore, \(\langle \alpha^2 \rangle \) is not weakly \(s \)-supplemented in \(G \), and consequently it is not \(c \)-supplemented in \(G \).

Example 1.3 Let \(G = A_4 = (Z_1 \times Z_2) \times Z_3 \) be the alternating group of degree 4. Since \((Z_1 \cap Z_2) = 1 \) and \((Z_1 \times Z_2) \) is normal in \(G \), \(Z_1 \) is \(g \)-s-supplemented in \(G \). But \(Z_1 \) is not weakly \(s \)-supplemented in \(G \) since \(G \) has no subgroup of order 6 and the supplemented subgroup of \(Z_1 \) in \(G \) is only \(G \).

All unexplained terminologies and notations are standard, the reader is referred to Refs. [3,10].

2 Preliminaries

Lemma 2.1 Let \(A, B \) and \(K \) be subgroups of a group \(G \).