Introduction to the CDEX experiment

Ke-Jun Kang¹, Jian-Ping Cheng¹, Jin Li¹, Yuan-Jing Li¹, Qian Yue¹, Yang Bai³, Yong Bi⁵, Jian-Ping Chang⁴, Nan Chen¹, Ning Chen¹, Qing-Hao Chen¹, Yun-Hua Chen⁶, Yo-Chun Chuang⁷, Zhi Deng¹, Qiang Du¹, Hui Gong¹, Xi-Qing Hao¹, Hong-Jian He¹, Qing-Ju He¹, Xin-Hui Hu³, Han-Xiong Huang², Teng-Rui Huang⁷, Hao Jiang¹, Hau-Bin Li⁷, Jian-Min Li¹, Jun Li⁴, Xia Li², Xin-Ying Li³, Xue-Qian Li³,⁷, Yu-Lan Li¹, Heng-Ye Liao⁷, Fong-Kay Lin⁷, Shin-Ted Lin⁷, Shu-Kui Liu⁵, Ya-Bin Liu¹, Lan-Chun Li¹, Hao Ma³, Shao-Ji Mao⁴, Jian-Qiang Qin¹, Jie Ren², Jing Ren¹, Xi-Chao Ruan², Man-Bin Shen⁶, Man-Bin Shen⁶, Lakhwinder Singh⁷, Manoj Kumar Singh⁷, Arun Kumar Soma⁷, Jian Su¹, Chang-Jian Tang⁵, Chao-Hsiung Tseng⁷, Ji-Min Wang⁶, Li Wang³, Qing Wang¹, Tsz-King Henry Wong⁷, Xu-Feng Wang¹, Shi-Yong Wu⁶, Wei Wu⁵, Yu-Cheng Wu¹, Zhong-Zhi Xianyu¹, Hao-Yang Xing², Xun-Jie Xu¹, Yin Xu³, Tao Xue¹, Li-Tao Yang¹, Song-Wei Yang⁷, Nan Yi¹, Chun-Xu Yu¹, Hao Yu¹, Xun-Zhen Yu⁵, Xiong-Hui Zeng⁶, Zhi Zeng¹, Lan Zhang⁴, Yun-Hua Zhang⁶, Ming-Gang Zhao³, Wei Zhao¹, Su-Ning Zhong¹, Jin Zhou⁷, Zu-Ying Zhou², Jing-Jun Zhu², Wei-Bin Zhu¹, Xue-Zhou Zhu¹, Zhong-Hua Zhu⁶

(CDEX Collaboration)

¹Department of Engineering Physics, Tsinghua University, Beijing 100084
²China Institute of Atomic Energy, Beijing 102413
³School of Physics, Nankai University, Tianjin 300071
⁴NUCTECH Company, Beijing 100084
⁵Department of Physics, Sichuan University, Chengdu 610065
⁶Yalongjiang Hydropower Development Company, Chengdu 627450
⁷Institute of Physics, Academia Sinica, Taipei 11529
⁸Department of Physics, Banaras Hindu University, Varanasi 221005

Corresponding authors. E-mail: ¹lixq@nankai.edu.cn, ²wangq@mail.tsinghua.edu.cn

Received March 11, 2013; accepted May 26, 2013

It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg-PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.

Keywords China Dark matter EXperiment (CDEX), dark matter, point-contact germanium detector, China Jinping underground Laboratory (CJPL)

PACS numbers 95.35.+d, 95.55.Vj

* Participate as TEXONO members.

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013
1 Introduction

Observation of the existence of dark matter (DM) undoubtedly was one of the greatest scientific events of the 20th century, then directly searching for DM and identifying it will be the most important and challengeable task of this century.

As a matter of fact, the conjecture about the existence of DM was proposed quite a long time ago in 1933 by Zwicky [1] stating that near the Coma cluster of galaxies velocity distribution implies more cluster mass than luminous matter and then in 1970 and later Rubin [2–4] reported the anomalously rotation curves of galaxies. The astronomical observation shows that the rotational curves of the test galaxies did not obey the gravitational law if only the luminous matter which resided at the center of the cluster existed. Namely, the velocities of test galaxies were supposed to be inversely proportional to the square roots of their distances from the center of the cluster, but instead, the rotational curve turns flat. It implies that there must be some unseen matter in the galaxy, i.e., DM. Moreover, hints about the existence of DM also appear when a collision of two clusters of galaxies was observed [5]. It was observed that for each cluster, the center of mass does not coincide with the center of the luminous matter after a collision between two clusters. It is explained as that two clusters both of which are composed of DM and luminous matter, collide, and after collision, the dark components penetrate through each other because they do not participate in electromagnetic interaction (EM) nor strong interaction, but the luminous fractions of the two clusters interact with each other via EM interaction, so remain near the collision region while the dark parts have left.

Moreover, all astronomical observations indicate that our universe is approximately flat [6], i.e., the total \(\Omega \) defined as \(\rho/\rho_c \) where \(\rho_c \) is the critical density and \(\rho \) is the total matter density in our universe, is close to unity. However, the cosmic microwave background (CMB) and big bang nucleosynthesis (BBN) data show that the fraction of luminous baryonic matter density \(\Omega_b \) is less than 5% and over 95% of our universe is dark. Further analysis [7] indicates that DM may take a fraction of 26.7% while dark energy occupies the rest over 68.3%. The dark energy is the most mysterious subject for which so far our understanding about the universe is not enough to give a reasonable answer even though there are many plausible models. By contrary, DM may have a particle correspondence.

The commonly accepted point of view [8] is that the main fraction of DM in our universe is the cold dark matter (CDM), which could be weakly interacting massive