Abstract. In this paper, the following result is given by using Hodge decomposition and weak reverse Hölder inequality: For every r_1 with
\[p - \left(2^{n+1} 100^n p \left(2^{3+n/(p-1)} + 1 \right) \right)^{-1} < r_1 < p, \]
there exists the exponent $r_2 = r_2(n, r_1, p) > p$, such that for every very weak solution $u \in W^{1,\text{loc}}(\Omega)$ to A-harmonic equation, u also belongs to $W^{1,\text{loc}}(\Omega)$. In particular, u is the weak solution to A-harmonic equation in the usual sense.

§1 Introduction

Let Ω be a bounded regular domain in $\mathbb{R}^n (n \geq 2)$. By regular domain we understand any domain of finite measure for which the estimates for Hodge decomposition in (2.1) and (2.2) are justified. See [5], [7], [4]. A Lipschitz domain, for example, is regular.

We denote by $L^p(\Omega)$ ($1 \leq p < \infty$) the space of functions defined on Ω, such that $|f(x)|^p$ is integrable with respect to the measure dx with the norm
\[\|f\|_{p,\Omega} = \left(\int_{\Omega} |f(x)|^p \, dx \right)^{1/p}. \]
The space $L^p_{\text{loc}}(\Omega)$ consists of functions which belong to $L^p(F)$ for every compact subset $F \subset \Omega$. The symbol $W^1_p(\Omega)$ ($W^1_p_{\text{loc}}(\Omega)$), $1 \leq p < \infty$ stands for the class of functions which belong to $L^p(\Omega)$ ($L^p_{\text{loc}}(\Omega)$) and whose weak partial derivatives exist and also belong to $L^p(\Omega)$ ($L^p_{\text{loc}}(\Omega)$).

We consider solutions u of a quasilinear second order equation
\[\text{div} A(x, \nabla u(x)) = 0, \quad (1.1) \]
where $A : \Omega \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ satisfies the usual measurability conditions (Caratheodory conditions) and that for some $1 < p < \infty$, the following conditions hold:

Received: 2004-06-28, Revised: 2005-07-10.
MR Subject Classification: 35J65.
Keywords: A-harmonic equation, very weak solution, Hodge decomposition, weak reverse Hölder inequality.
(I) the Lipschitz type condition
\[|A(x, \xi) - A(x, \zeta)| \leq b |\xi - \zeta| (|\xi| + |\zeta|)^{p-2}; \]

(II) the monotonicity inequality
\[(A(x, \xi) - A(x, \zeta), \xi - \zeta) \geq a |\xi - \zeta|^2 (|\xi| + |\zeta|)^{p-2}; \]

(III) the homogeneity condition
\[A(x, \lambda \xi) = |\lambda|^{p-2} \lambda A(x, \xi) \]
for almost every \(x \in \Omega \) and all \(\xi, \zeta \in \mathbb{R}^n \), \(0 < a \leq b < \infty \), \(\lambda \in \mathbb{R} \).

Remark 1. The mapping \(A(x, \xi) = |\xi|^{p-2} \xi \), which generates the \(p \)-harmonic equation
\[\text{div} \left(|\nabla u(x)|^{p-2} \nabla u(x) \right) = 0, \]

satisfies the assumptions (I) (II) (III).

We need the following definition.

Definition 1. A function \(u \in W^{1}_{p, \text{loc}}(\Omega) \) is said to be a weak solution to (1.1) if
\[\int_{\Omega} \langle A(x, \nabla u), \nabla \phi \rangle \, dx = 0 \quad (1.2) \]
holds for all \(\phi \in W^{1}_{p, 0}(\Omega) \).

Recall that the original test function for weak solution is that \(\phi \in C_{0}^{\infty}(\Omega) \), and then by an approximation argument it is extended to all \(\phi \in W^{1}_{p, 0}(\Omega) \).

By the Lipschitz type inequality, it is clear that in order to guarantee the integrability of the integrand of (1.2) with \(\phi \in C_{0}^{\infty}(\Omega) \), it is only necessary that \(u \in W^{1}_{r, \text{loc}}(\Omega) \), where \(\max\{1, p-1\} \leq r \). For this reason we give the following definition.

Definition 2. A function \(u \in W^{1}_{r, \text{loc}}(\Omega) \) with \(\max\{1, p-1\} < r < p \) is called a very weak solution to (1.1), if (1.2) holds for all \(\phi \in W^{1}_{r, p-1, 0}(\Omega) \).

In [7], Iwaniec and Sbordone proved the following regularity result for very weak solutions to (1.1).

Lemma 1. There exist exponents
\[1 < r_{1} = r_{1}(n, p, a, b) < p < r_{2} = r_{2}(n, p, a, b) < \infty, \]
such that every very weak solution \(u \in W^{1}_{r_{1}, \text{loc}}(\Omega) \) to \(A \)-harmonic equation belongs to \(W^{1}_{r_{2}, \text{loc}}(\Omega) \).

Lemma 2. Let \(B_{R} \) denotes the open ball of radius \(R \). \(B_{\sigma R} \) stands for the ball of radius \(\sigma R \) with the same center as in \(B_{R} \). If \(u \in W^{1}_{p}(B_{R}), 1 \leq p < \infty \), then for any \(0 < \sigma \leq 1 \),
\[\| u - \bar{u}_{B_{\sigma R}} \|_{L^{p}(B_{R})} \leq \left(\frac{2}{\sigma} \right)^{n/p} \text{diam}B_{R} \| \nabla u \|_{L^{p}(B_{R})} \quad (1.3) \]
where \(\bar{u}_{B_{\sigma R}} = \frac{1}{|B_{\sigma R}|} \int_{B_{\sigma R}} u(x) \, dx \) is the average value of \(u(x) \) over \(B_{\sigma R} \).

Lemma 2 is from Lemma 1.5 in [1].