MOMENT OF LEVY MEASURE OF OPERATOR-STABLE LAW

Zhang Huizeng Ying Jiangang Jin Mengwei

Abstract. In 1979, Jurek gave a characterization of the moment of a full operator-stable \(\mu \) by eigenvalues of exponent matrix of \(\mu \). Here, a characterization of the moment of Lévy measure (restricted on a neighbor of 0) of a full operator-stable \(\mu \) by eigenvalues of exponent matrix of \(\mu \) is given.

§ 1 Introduction

Let \(\mathbb{R}^d \) denote the \(d \)-dimensional Euclidean space with inner product \(\langle \cdot, \cdot \rangle \) and the norm \(|\cdot| \). We write \(P(\mathbb{R}^d) \) for the set of probability measures on \(\mathbb{R}^d \), \(\mu \ast v \) for the convolution of \(\mu, v \in P(\mathbb{R}^d) \) and \(\delta_x (x \in \mathbb{R}^d) \) for the probability measure concentrated at the point \(x \). An element \(\mu \in P(\mathbb{R}^d) \) is called infinitely divisible if for any \(n = 2, 3, \ldots \), there exists \(\mu_n \in P(\mathbb{R}^d) \) such that \(\mu_n \ast \mu = \mu \). Further, \(\mu \) is infinitely divisible if and only if the characteristic function \(\hat{\mu} \) of \(\mu \) is of the norm

\[
\hat{\mu}(z) = \exp \left[-\frac{1}{2} \langle z, Az \rangle + i \langle Y, z \rangle + \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle 1_D(x)) M(dx) \right].
\]

(1.1)

where \(D \) is the unit closed ball on \(\mathbb{R}^d \), \(A \) is a symmetric nonnegative-definite \(d \times d \) matrix, \(M \) is a measure on \(\mathbb{R}^d \) satisfying

\[
M(0) = 0 \text{ and } \int_{\mathbb{R}^d} (|x|^2 \wedge 1) M(dx) < \infty,
\]

(1.2)

and \(Y \in \mathbb{R}^d \) (refer to [5]). The representation (1.1) is unique and in the sequel we will write \(\mu = [A, M, Y] \) if \(\hat{\mu} \) has the representation (1.1).

A measure \(\mu \in P(\mathbb{R}^d) \) is said to be full if its support is not contained in any proper subspace of \(\mathbb{R}^d \). Given a linear operator \(B \) on \(\mathbb{R}^d \) and \(\mu \) in \(P(\mathbb{R}^d) \), we shall use \(B\mu \) to denote the probability measure defined by the formula \((B\mu)(E) = \mu(B^{-1}(E)) \) for any Borel subset \(E \) on \(\mathbb{R}^d \).

Received: 2004-06-02.
MR Subject Classification: 60G17, 60J65.
Keywords: Operator-stable law, Lévy measure, moment.
In paper [6], Sharpe defined and investigated the class of full operator-stable measures, i.e., the class of probability measure \(\mu \) on \(\mathbb{R}^d \) such that, for some probability measure \(\nu \) there exist nonsingular linear transformations \(\{ A_n \} \) and points \(\{ a_n \} \) such that the sequence \(\{ A_n \nu * \delta(a_n) \} \) converges weakly to \(\mu \). Sharpe also showed that a full measure \(\mu \) on \(\mathbb{R}^d \) is operator-stable if and only if
\[
\mu = t^\beta \mu * \delta(b(t)) \quad \text{for all } t > 0,
\]
where \(B \) is a nonsingular linear transformation, \(b : (0, \infty) \to \mathbb{R}^d \), and \(t^\beta \) is defined by the series
\[
\sum_{k=0}^{\infty} (\ln t)^k (k!)^{-1} B^k.
\]
Such a transformation \(B \) is called an exponent (matrix) for \(\mu \).

In the following, let \(\mu = [0, M, \gamma] \) be a full operator-stable measure on \(\mathbb{R}^d \) and \(B \) be an exponent for \(\mu \). Let \(h \) be the minimal polynomial of \(B \), and \(a_k, k = 1, 2, \ldots, d \), be the eigenvalues of \(B \), then from Theorem 3 and Theorem 4 of [6] we have
\[
\Re a_k > 1/2. \quad (1.3)
\]
Let \(\beta = \max_{1 \leq k \leq d} \Re a_k \). By Proposition 2.1 and Corollary 4.1 of [2] we get the following theorem.

Theorem 1.1. For a full operator-stable measure \(\mu = [0, M, \gamma] \) and \(r \geq 0 \), we have
\[
\int_{|x| \geq 1} |x|^r \mu(dx) < \infty \text{ if and only if } r < 1/\beta.
\]

Actually for any infinitely divisible measure \(\mu \), there exists a Lévy process \(X = (X_t, P^0) \) on \(\mathbb{R}^d \) such that \(\mu = P^0 * X_1 \). Let \(\pi_n : 0 = t_{s,1} < t_{s,2} < \ldots < t_{s,n} \leq 1 \) be a sequence of partitions of \([0,1] \). The sequence \(\{ \pi_n \} \) will be called "nested" if \(\pi_{n+1} \) is a refinement of \(\pi_n \) for each \(n \geq 1 \). Define
\[
V(X,r,\pi_n) = \sum_{s \geq 1} |X(t_{s+1}) - X(t_s)|^r.
\]
As we know, the Lévy measure \(\mu \) manages the jumps of \(t \mapsto X_t \), and specifically, \(\mu \) restricted on \(\{ |x| \geq 1 \} \) manages the big jumps, while \(\mu \) restricted on \(\{ |x| < 1 \} \) manages the small jumps. The condition \(\int_{|x| \geq 1} |x|^r \mu(dx) < \infty \) if and only if \(E^0 |X_1|^r < \infty \). In this article, we give a characterization of the finiteness of moments of small jumps, \(\int_{|x| \leq 1} |x|^r \mu(dx) \), also in terms of the eigenvalues of the exponent matrix of \(\mu \). The problem is interesting since we know that if \(\{ \pi_n \} \) is a nested sequence of partitions of \([0,1] \) and \(\int_{|x| \leq 1} |x|^r \mu(dx) < \infty \), then \(\sup_n V(X,r,\pi_n) < \infty \) almost surely. (See Theorem 3.1 of [3])

Let \(U \) denote the unit sphere in \(\mathbb{R}^d \). For any Borel subset \(E \) of \(\mathbb{R}^d \) \(\setminus \{0\} \) and any \(u \in U \), set \(M_u(E) := M_u(B) := \int_0^1 1_{\{t^\beta u \geq 1\}} t^{-2} dt \). We let \(L := L(B) := \{ u \in U : \text{for all } t, |t^\beta u| > 1 \} \) and set \(K(F) = M(t^\beta u \in F, t > 1) \), where \(F \subset L \) is of Borel subset, then
\[
M(E) = \int_L M_u(E)K(du) \quad (1.4)
\]
for any Borel subset \(E \) of \(\mathbb{R}^d \setminus \{0\} \). (See Theorem 2 of [1]).