L^p estimates for the Schrödinger type operators

LIU Yu1 HUANG Ji-zheng2

Abstract. Let $L_k = (-\Delta)^k + V^k$ be a Schrödinger type operator, where $k \geq 1$ is a positive integer and V is a nonnegative polynomial. We obtain the L^p estimates for the operators $\nabla^2 L_k^{-1}$ and $\nabla^k L_k^{-\frac{1}{2}}$.

§1 Introduction

In this paper we are concerned with the Schrödinger type operator

$$L_k = (-\Delta)^k + V^k \quad \text{on } \mathbb{R}^n, \quad n > 2k$$

where $k \geq 1$ is a positive integer and $V(x)$ is a nonnegative polynomial. This operator can be regarded as a natural generalization of Schrödinger operator $L_1 = -\Delta + V$. Recently, some scholars have paid close attention to this operator (cf. [1,2,12]). In particular, when $k = 2$, Zhong obtained the L^p boundedness of the operator $\nabla^4 L_2^{-1}$ in [13]. Furthermore, Sugano [11] obtained the same result as Zhong’s under a weaker condition on V. The L^p estimates of the operator $\nabla^2 L_2^{-\frac{1}{2}}$ had been studied by Liu and Dong in [8] for $1 < p \leq p_0$, where the nonnegative potential V belongs to reverse Hölder class B_q and $\frac{1}{p_0} = \frac{2}{q} - \frac{2}{n}$. The purpose of this paper is to establish the L^p boundedness for the operators $\nabla^{2k} L_k^{-1}$ and $\nabla^k L_k^{-\frac{1}{2}}$. Throughout the paper we only consider the operators L_k for $k \geq 3$. The main reason is that the operators L_1 and L_2 have been investigated in [9], [13] and [8]. From now on, we always denote the Schrödinger type operator L_k simply by L.

To state our main results, we first recall some definitions and notations. A nonnegative locally L^q integrable function V on \mathbb{R}^n is said to belong to reverse Hölder class B_q ($1 < q < \infty$) if there exists a constant $C > 0$ such that the reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_B V(x)^q \, dx \right)^\frac{1}{q} \leq C \left(\frac{1}{|B|} \int_B V(x) \, dx \right)$$

(1)

Received: 2010-07-22.
MR Subject Classification: 35J10, 42B20.
Keywords: L^p estimate, reverse Hölder class, Schrödinger operator.
Supported by the National Natural Science Foundation of China (10901018, 11001002), the Beijing Foundation Program (201010009009, 2010D005002000002), and the Fundamental Research Funds for the Central Universities.
holds for every ball B in \mathbb{R}^n. It follows from (0.12) in [9] that if V is a nonnegative polynomial, then V belongs to B_q for all q, $1 < q < \infty$.

Let $\alpha = (\alpha_1, \cdots, \alpha_n)$ denote the multi-index with $\alpha_i \in \mathbb{N}$. Define $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $\partial^\alpha = D^\alpha = \partial^{\alpha_1}/\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$ for $|\alpha| = \alpha_1 + \cdots + \alpha_n$. For any positive integer k and a smooth function u, denote $D^k u(x) = (\partial^\alpha u(x) : |\alpha| = k)$ and $|D^k u(x)|^2 = \sum_{|\alpha|=k} |\partial^\alpha u(x)|^2$. Also, for any smooth functions u and v, denote $D^k u(x) D^j v(x) = \sum_{|\alpha|=k, |\beta|=j} C_{\alpha, \beta} \partial^\alpha u(x) \partial^\beta v(x)$.

Let $H_t(x, y) = e^{-t(-\Delta)^k}(x, y)$ be the polyharmonic heat kernel of $(-\Delta)^k$ in \mathbb{R}^n. It follows from [4] that there exist positive constants c_1 and c_2 such that

$$ |H_t(x, y)| \leq c_1 t^{-\frac{n}{2}} \exp\{-c_2 \frac{|x-y|^2}{t}\}. \quad (2) $$

Different from the case of Laplacian, the polyharmonic heat kernel $H_t(x, y)$ is no longer positive (cf. [5] and [7]). The Schrödinger type operator L generates a (C_0) semigroup $\{T^s_t : s > 0\} = \{e^{-sL} : s > 0\}$. Let $K^L_s(x, y)$ denote the kernel of T^s_t. Because the kernel $K^L_s(x, y)$ is also not positive, we can’t use Trotter product formula to obtain the estimate in (2) as the case of $k = 1$. But Proposition 5.2 in [3] implies that the following upper bounds of the kernel $K^L_s(x, y)$ are valid, that is,

$$ |K^L_s(x, y)| \leq c_1 t^{-\frac{n}{2}} \exp\{-c_2 \frac{|x-y|^2}{t}\}. \quad (3) $$

Assume $V \in B_\infty^p$. We recall the auxiliary function $\rho(x)$ introduced by Shen [9] defined by

$$ \rho(x) = \frac{1}{m(x, V)} = \sup_{r>0} \left\{ r : \frac{1}{r^n-1} \int_{B(x, r)} V(y) \, dy \leq 1 \right\}, \quad x \in \mathbb{R}^n, $$

where $B(x, r)$ denotes the ball with centre x, radius r. The properties of the auxiliary function $m(x, V)$ are given by Shen [9]. It is known that $0 < \rho(x) < \infty$ for any $x \in \mathbb{R}^n$ (from Lemma 1.2 in [9]). If V is a polynomial with the degree of l, it follows from [9, p.517] that $m(x, V) \sim \sum_{|\alpha| \leq l} |\partial^\alpha V(x)|^{l+1}$.

We have the following results.

Theorem 1.1. Suppose V is a nonnegative polynomial. Then for $1 < p \leq \infty$, there exists a constant $C > 0$ such that

$$ ||V^k L^{-1} f||_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)} . \quad (4) $$

Corollary 1.1. Suppose V is a nonnegative polynomial. Then there exists a positive constant C such that, for $1 < p < \infty$,

$$ ||\nabla^{2k} L^{-1} f||_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)}, \quad (5) $$

where $\nabla^{2k} = \nabla^2 = \partial^{\alpha_1}/\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$, $2k = |\alpha| = \alpha_1 + \cdots + \alpha_n$.

Theorem 1.2. Suppose V is a nonnegative polynomial. Then for $1 < p < \infty$, there exists a constant $C > 0$ such that

$$ ||\nabla^k L^{-\frac{1}{2}} f||_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)}, $$

where $\nabla^k = \nabla^k = \partial^{\alpha_1}/\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$, $k = |\alpha| = \alpha_1 + \cdots + \alpha_n$.