INVARlANT MEASURE, RATIO LIMITS
AND MARTIN BOUNDARY

Zhao Minzhi Jin Mengwei

Abstract. In this article the notion of quasi-symmetry is introduced. It is proved that the quasi-
symmetry is equivalent to the uniqueness of invariant measure of Lévy processes in some sense.
Moreover, the relationship between ratio limits and invariant measures is studied.

§ 1 Introduction

Let $X=(X_t;P^x)$ be a Lévy process on \mathbb{R}^n with the convolution semigroup $\{\pi_t; t>0\}$. For any probability measure μ on \mathbb{R}^n, define the characteristic function of μ on \mathbb{R}^n as $\hat{\mu}(u) := \int e^{i\langle u, y \rangle} \mu(dy)$. Then $\pi = \{\pi_t\}$ is a convolution semigroup with Lévy exponent ϕ, i.e. $\pi_t(u) = e^{-\phi(t)}$.

For any probability measure μ on \mathbb{R}^n, we define the moment generating function \mathcal{L} of μ on \mathbb{R}^n as $\mathcal{L}_\mu(u) := \int e^{i\langle u, y \rangle} \mu(dy)$. Let $\varphi = \mathcal{L}_\pi$, then $\mathcal{L}_\pi = \varphi$. The Martin boundary of π is defined by $E := \{u: \varphi(u) = 1\}$.

For any $u \in E$, the measure $e^{i\mathcal{L}_u}dx$ is an invariant measure of X.

Let $\beta(\mathbb{R}^n)$ denote the Borel σ-algebra of \mathbb{R}^n and let $\beta(\mathbb{R}^n)^c := \{A \in \beta(\mathbb{R}^n); \text{the closure of } A \text{ is compact}\}$. Let $m, \cdot \cdot$ and dx denote the Lebesgue measure. For any $u \in \mathbb{R}^n$, let $\|u\|$ denote the length of u.

We call $X=(X_t;P^x)$ non-singular if for some $t>0$, π_t has a non-trivial absolutely continuous (w. r. t. Lebesgue measure) component. Otherwise, the process is called singular.

A σ-finite measure μ on \mathbb{R}^n is called an invariant measure for X if $\mu \ast \pi_t = \mu$ for all $t>0$. Denote by Inv the set of all invariant measure for X. Clearly $m \in \text{Inv}$. We say that X has a unique invariant measure if $\mu \in \text{Inv}$ implies that μ is a multiple of m and that X has a

Received: 2001-09-24.
MR Subject Classification: 60J27, 60J45.
Keywords: convolution semigroup, invariant measure, Martin boundary, quasi-symmetry.
unique Radon invariant measure if the only Radon measure in Inv are multiples of m.

First we find that the Condition 1 which appears in [2] and [3] is very interesting and important. Thus in § 2 we introduce the concept of quasi-symmetry to describe the Condition 1 and give some equivalent conditions. We also prove that a quasi-symmetric Lévy process has a unique Radon invariant measure if and only if its Lévy exponent has a unique zero at 0. In 1966 Ney and Spitzer[11] gave a description of the Martin boundary for a random walk. In § 3, from a result of Port and Stone, we obtain a ratio limit theorem for non-singular Lévy processes.

§ 2 Quasi-symmetric and invariant measure

In this section, we shall make the basic assumption that π_1 is not supported on a proper subspace of \mathbb{R}^n. Since in general cases there exists a subspace H of \mathbb{R}^n such that when regarding $\{\pi_1; t > 0\}$ as a convolution semigroup on H it satisfies the assumption. Our assumption involves no loss of generality.

In 1971 Port and Stone[2] proved some ratio limit theorems. These theorems take their nicest form when X satisfies

Condition 1. There exists a compact subset $K \subseteq \mathbb{R}^n$ such that

$$\limsup_{t \to \infty} \sup \pi_t(K)^{1/2} = 1.$$

Definition 2.1. We say that $\{\pi_1; t > 0\}$ is quasi-symmetric if it satisfies Condition 1. We say that X is quasi-symmetric if its corresponding convolution semigroup $\{\pi_1; t > 0\}$ is quasi-symmetric.

We say that $\{\pi_1; t > 0\}$ is degenerate if for some $a \in \mathbb{R}, u \in \mathbb{R}^n$ with $u \neq 0, \pi_1$ is supported on $\{x: (u, x) = a\}$. Otherwise $\{\pi_1; t > 0\}$ is said to be nondegenerate.

Let $F = \{u \psi(u) < \infty\}$, we have the following lemma.

Lemma 2.1. ψ is a convex extended real-valued function and F is a convex set. Furthermore, ψ is a strictly convex function of F.

Proof. Since $x \mapsto e^x$ is a strictly convex function of \mathbb{R}, ψ is a convex function and F is a convex subset. By way of contradiction, suppose that ψ is not a strictly convex function on F, then there exist $u_1, u_2 \in F, u_1 \neq u_2$ such that $\psi(au_1 + (1 - a)u_2) = a\psi(u_1) + (1 - a)\psi(u_2)$ for some $0 < a < 1$. Since e^x is strictly convex, $(u_1, x) = (u_2, x)$ a.e. π_1. Hence $\sup \pi_1 \subseteq \{x: (u_1 - u_2, x) = 0\}$ which contradicts the basic assumption.

Lemma 2.2. Any local minimum point of ψ is a global minimal point and there is only one local minimum point of ψ.

Proof. By way of contradiction, suppose a minimum point u_0 is local but not global. Then there exist $u \neq u_0$ such that $\psi(u) < \psi(u_0)$ and $\psi(au + (1 - a)u_0) \leqslant a\psi(u) + (1 - a)\psi(u_0) < \psi(u_0)$ for all $0 < a < 1$. This contradicts that u_0 is a local minimum point. So u_0 is a global minimal point.