SOLVABILITY OF A QUATERNION MATRIX EQUATION

Cao Wensheng

Abstract. This paper discusses the solvability of quaternion matrix equation $A^* X^* B^* + B X A = D$ and obtains its general explicit solutions in terms of A, B, D and their Moore-Penrose inverses.

§ 1 Introduction

Let R be the real number field, $C = R \oplus Ri$ be the complex number field, and $H = C \oplus Cj = R \oplus Ri \oplus Rj \oplus Rk$ be the quaternion division ring over R, where $k_1 = ij = ji$, $i^2 = j^2 = k^2 = -1$. If $a = a_1 + a_2i + a_3j + a_4k \in H$, where $a_i \in R$, then let $\overline{a} = a_1 - a_2i - a_3j - a_4k$ be the conjugate of a. Let $H^{m \times n}$ be the set of all $m \times n$ matrices over H. If $A = (a_{ij}) \in H^{m \times n}$, let A^T be the transpose matrix of A, \overline{A} be the conjugate matrix of A, and $A^* = (\overline{a}_{\overline{ij}})^T$ be the transpose conjugate matrix of A. $A \in H^{m \times n}$ is said to be Hermite matrix if $A = A^*$, and to be skew-Hermite matrix if $A = -A^*$.

The Moore-Penrose inverse of matrix $A \in H^{m \times n}$, denoted by A^+, is a matrix $X \in H^{n \times m}$ which satisfies these equations

$$AXA = A, \quad XAX = X, \quad (AX)^* = AX, \quad (XA)^* = XA.$$

As in [4, 5], for $A \in H^{m \times n}$, A can be uniquely written as

$$A = A_1 + A_2j, \quad \text{where} \quad A_1, A_2 \in C^{m \times n},$$

and we define the $2m \times 2n$ complex matrix A_c by

$$A_c = \begin{pmatrix} \overline{A_1} & A_2 \\ -\overline{A_2} & \overline{A_1} \end{pmatrix}.$$

A_c is called the complex representation matrix of A. By the properties of complex representation matrix (cf. Lemma 1 in [5]), it is easy to see that $(A_c)^+ = (A^+)$, and $(A_c)^* = (A^*)$, where $(A_c)^+$ is the Moore-Penrose inverse of A, according to the usual definition in complex matrix theory. Thus the Moore-Penrose inverse of A is unique and the followings properties hold:

Received: 2001-09-17.

MR Subject Classification: 15A33, 15A24.

Keywords: Moore-Penrose inverse, quaternion matrix, Hermite matrix.

Supported by the National Natural Science Foundation of China (19801011).
\[
A = AA^* (A^+)^* = (A^+)^* A^* A, \\
A^+ = A^+ (A^+) A^* = A^* (A^+) A^+ , \\
A^* = A^+ AA^* = A^* AA^+, \\
(A^*)^+ = (A^+)^*, \quad A = (A^+)^+, \\
(A^* A)^+ = A^+ (A^*)^+, \\
AA^+ = (AA^+)^+ = (AA^*)^*, \quad A^+ A = (A^+ A)^+ = (A^+ A)^*.
\]

For example, by properties of complex representation matrix and Moore-Penrose inverse of complex matrix, we have

\[
A_x = A x (A_x^+)^* = (A x (A_x^+)^*) x, \quad \text{and} \quad A_x = (A^+)^* A_x^* A = ((A^+)^* A^* A)^*,
\]
thus (1.4) holds. Similarly, we can prove (1.5)–(1.9).

For \(A \in H^{n \times n} \), let

\[
E_A = I - AA^+, \quad F_A = I - A^+ A ,
\]
then we have

\[
E_A = E_A^* = E_A^+, \quad F_A = F_A^* = F_A^+.
\]

The symmetric solution of the linear matrix equation over the real and complex number field has been investigated in \([1-3]\) etc.

Recently, the matrix equation over a ring or division ring has been widely studied (cf. \([5-8]\]).

A Hermite matrix \(X \) is called a Hermite solution of a matrix equation if \(X \) is a solution of this matrix equation.

In this paper we discuss the Hermite solution of the quaternion matrix equation

\[
AXB = D
\]
and solvability of the quaternion matrix equation

\[
A^* X^* B^* \pm B X A = D.
\]

In § 2, we give necessary and sufficient conditions for Eq. (1.12) to have a Hermite or skew-Hermite solution as well as explicit formula in terms of \(A, B, D \) and their Moore-Penrose inverses. In § 3, we consider the solvability of the matrix Eq. (1.13). We obtain necessary and sufficient conditions for the existence of solutions and their general forms in terms of \(A, B, D \) and their Moore-Penrose inverses. Compared with other discussions of the similar problem over \(C \) or \(H \), our results are easy to use in theory and can be generalized to other cases.

\section*{§ 2 Matrix equation \(A X B = D \)}

\textbf{Lemma 2.1.} \([4]\) Let \(A \in H^{m \times n}, B \in H^{p \times q}, D \in H^{n \times q} \), then the quaternion matrix equation

\[
AXB = D
\]
has a solution if and only if

\[
AA^+ DB^+ B = D.
\]