The Essential Norm of a Generalized Composition Operator Between Bloch-Type Spaces and Q_K Type Spaces

Yanyan Yu · Yongmin Liu

Received: 14 June 2010 / Accepted: 25 November 2010 / Published online: 15 December 2010
© Springer Basel AG 2010

Abstract Let φ be an analytic self-map of the unit disk \mathbb{D}, $H(\mathbb{D})$ the space of analytic functions on \mathbb{D} and $g \in H(\mathbb{D})$. We define a linear operator as follows

$$C_{\varphi}^g f(z) = \int_0^z f'(\varphi(w))g(w) \, dw,$$

on $H(\mathbb{D})$. In this paper, estimates for the essential norm of the generalized composition operator between Bloch-type spaces and Q_K type spaces are obtained.

Keywords Essential norm · Generalized composition operator · Bloch-type space · Q_K type space

Mathematics Subject Classification (2000) Primary 47G10 · 47B38 · 47B33; Secondary 30D45 · 30H25

Communicated by Daniel Aron Alpay.

This study is supported by the National Natural Science Foundation of China (10471039) and the Grant of Higher Schools’ Natural Science Basic Research of Jiangsu Province of China (06KJD110175, 07KJB110115).

Y. Yu
School of Mathematics and Physics Science, Xuzhou Institute of Technology, Xuzhou 221008, People’s Republic of China

Y. Liu
Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, People’s Republic of China
e-mail: minliu@xznu.edu.cn
1 Introduction

First, we introduce some basic notations which are used in this paper. The unit disk in the finite complex plane \mathbb{C} will be denoted by $D = \{ z \in \mathbb{C} : |z| < 1 \}$. $H(D)$ will denote the space of all analytic functions on D, $B(D)$ will denote the subset of $H(D)$ consisting of these $f \in H(D)$ for which $|f(z)| < 1$, dA will denote the Lebesgue measure on D, normalized so that $A(D) = 1$. For every analytic self-map φ of the unit disk D and $g \in H(D)$, Li and Stević [1,2] defined the following operator

$$C^g_\varphi f(z) = \int_0^z f'(\varphi(w)) g(w) \, dw,$$

on $H(D)$. The operator C^g_φ is called the generalized composition operator. A fundamental problem in the study of generalized composition operators is to relate function theoretic properties of φ and g to operator theoretic properties of the restriction of C^g_φ to various Banach spaces of analytic functions.

Recall that a bounded linear map T from a Banach space X into a Banach space Y is called compact if it maps the closed unit ball of X onto a relatively compact set in Y. The essential norm of T is defined to be the distance to the compact operators, that is

$$\|T\|_{e,X \to Y} = \inf \{ \|T - S\|_{X \to Y} : S \text{ is compact} \}.$$

Since the set of all compact operators is a closed subset of the set of bounded operators, it follows that $\|T\|_{e,X \to Y} = 0$ if and only if T is compact, estimates for $\|T\|_{e,X \to Y}$ give the conditions for T to be compact.

Essential norm formulas for composition operators are known in various settings. When C_φ acts from the Hardy space $H^2(D)$ to itself, Shapiro [3] gave a formula for $\|C_\varphi\|_e$, the essential norm of C_φ, in terms of the Nevanlinna counting function for φ. A similar formula, using a generalized Nevanlinna counting function, for the essential norm of C_φ acting on the Bergman space $A^2(D)$ was given in [4]. In the case of the Bloch space, Montes-Rodriguez [5] gave an exact formula, namely,

$$\|C_\varphi\|_e = \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} |\varphi'(z)|.$$

For the weighted composition operator from Bloch-type space B^α into $B^\beta (0 < \alpha < 1, 0 < \beta < \infty)$, MacCluer and Zhao [6] showed that

$$\|uC_\varphi\|_e = \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha} |u(z)\varphi'(z)|.$$

In [7], Stević gave upper and lower estimates for $\|DC_\varphi\|_e$ when DC_φ maps B^α to H^∞, where D is the differentiation operator. In [8], Mikael, Makhmutov and Taskinen gave