GOL’DBERG’S CONSTANTS

By

WALTER BERGWEILER1 AND ALEXANDRE ERemenko2

Dedicated to the memory of A. A. Gol’dberg

Abstract. We study two extremal problems of geometric function theory introduced by A. A. Gol’dberg in 1973. For one problem we find the exact solution, and for the second one we obtain partial results. In the process, we study the lengths of hyperbolic geodesics in the twice punctured plane, prove several results about them, and make a conjecture. Gol’dberg’s problems have important applications to control theory.

1 Introduction

Gol’dberg[16] studied a class of extremal problems for meromorphic functions. Let F_0 be the set of all holomorphic functions f defined in the rings

$$\{z : \rho(f) < |z| < 1\},$$

omitting 0 and 1, and such that the indices of the curve $f(\{z : |z| = \sqrt[3]{\rho(f)}\})$ with respect to 0 and 1 are non-zero and distinct.

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ and $F_1 \subset F_0$ be the subclass consisting of functions meromorphic in U. Functions in F_1 can be described as meromorphic functions in U with the property that the numbers of preimages of 0, 1 and ∞, counted with multiplicities, are all finite and pairwise distinct.

Let F_2, F_3, F_4 be the subclasses of F_1 consisting of functions holomorphic in U, rational functions and polynomials, respectively. For f in any of these classes $F_j, 1 \leq j \leq 4$, we define $\rho(f)$ as

$$\rho(f) = \sup\{|z| : f(z) \in \{0, 1, \infty\}|.$$
Gol’dberg’s constants are $A_j = \inf_{F_j} \rho(f)$, $0 \leq j \leq 4$. Gol’dberg credits the problem of minimizing $\rho(f)$ to E. A. Gorin. Gol’dberg proved that

$$0 < A_0 = A_1 = A_3 < A_2 = A_4,$$

and showed that there exist extremal functions for A_0 and A_2, but extremal functions for A_1, A_3 or A_4 do not exist. He also proved the estimates

$$A_0 < 0.0091 \quad \text{and} \quad 0.0000038 < A_2 < 0.0319.$$

In view of (1.1), we consider only A_0 and A_2.

The constants A_0 and A_2 are important for several reasons. They are related to the following questions.

Problem 1. Which triples of non-negative divisors in U of finite degree are divisors of zeros, poles, and 1-points of a meromorphic function in U?

The constants A_0 and A_2 give the only general restrictions for this problem that are known to us.

Problem 2. Let $\phi_1, \phi_2, \ldots, \phi_n$ be rational functions restricted to U. Does there exist a meromorphic function f in U which avoids ϕ_1, \ldots, ϕ_n?

Avoidance means that the graphs of f and ϕ_j are disjoint subsets of $U \times \mathbb{C}$, that is, $f(z) \neq \phi_j(z)$ for $z \in U$. If the graphs of the ϕ_j are pairwise disjoint, then such a function f exists; this is a famous result of Slodkowski [27, Lemma 2.1]; see also [12]. If $n = 3$ and the graphs of two functions ϕ_1 and ϕ_2 are disjoint, then the avoidance problem is equivalent to Problem 1 for holomorphic functions [7].

The avoidance problem is important for control theory: it is equivalent to the problem of simultaneous stabilization of several single input–single output linear systems, see [7, 8, 10, 14] and references therein.

In this paper, we find the exact value of A_0 and some related constants which are then used in our investigation of A_2, on which we only have partial results.

The first explicit lower bound for A_0 was found by Jenkins [21] who stated his result as

$$A_0 \geq 0.00037008.$$

Blondel, Rupp and Shapiro [8] proved that $A_2 > 10^{-5}$, then Batra [5, 6] improved this to $A_2 > 0.0012$.

In Section 2, we give the precise value.