Spin-glass, antiferromagnetism and Kondo behavior in Ce$_{2}$Au$_{1-x}$Co$_{x}$Si$_{3}$ alloys

SUBHAM MAJUMDAR1, E V SAMPATHKUMARAN1,*, ST BERGER2, M DELLA MEA2, H MICHOR2, E BAUER2, M BRANDO3, J HEMBERGER3 and A LOIDL3

1Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
2Institute for Experimental Physics, Vienna University of Technology, A-1040 Wien, Austria
3Experimentalphysik V, Electronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany

*Email: sampath@tifr.res.in

Abstract. Recently, the solid solution Ce$_{2}$Au$_{1-x}$Co$_{x}$Si$_{3}$ has been shown to exhibit many magnetic anomalies associated with the competition between magnetic ordering and the Kondo effect. Here we report high pressure electrical resistivity of Ce$_{2}$Au$_{1}$Si$_{3}$, ac susceptibility (χ) and magnetoresistance of various alloys of this solid solution in order to gain better knowledge of the magnetism of these alloys. High pressure resistivity behavior is consistent with the proposal that Ce$_{2}$Au$_{1}$Si$_{3}$ lies at the left-hand side of the maximum in Doniach’s magnetic phase diagram. The ac χ data reveal that there are in fact two magnetic transitions, one at 2 K and the other at 3 K for this compound, both of which are spin-glass-like. However, as the Co concentration is increased, antiferromagnetism is stabilized for intermediate compositions before attaining non-magnetism for the Co end member.

Keywords. Ce$_{2}$Au$_{1-x}$Co$_{x}$Si$_{3}$ alloy; spin-glass; antiferromagnetism; Kondo behaviour; magnetoresistance.

PACS Nos 75.20.Hr; 75.50.Ee; 75.50.Lk

1. Introduction

The study of the consequences of the competition between the Kondo effect and magnetic ordering in Ce-based systems continue to be an active topic of research. In this regard, there is a recent theoretical prediction [1] that disordered Kondo lattice alloys may be spin-glasses, particularly near the quantum critical point (QCP) in addition to non-Fermi liquid characteristics. The predictions of this theory were also substantiated [1] by experimental evidences based on a few other solid solutions, viz., CeNi$_{1-x}$Cu$_{x}$ and CeCoGe$_{3-x}$Cu$_{x}$. It is therefore of interest to carefully investigate more such solid solutions in order to arrive at a global understanding of such predictions. In this respect, we considered it worthwhile to probe the recently discovered [2,3] solid solution, Ce$_{2}$Au$_{1-x}$Co$_{x}$Si$_{3}$, in more detail. With this primary motivation, we have carried out ac susceptibility (χ) and magnetoresistance (MR) measurements on selected compositions of this alloy series at low temperatures.
In addition, we have carried out high pressure electrical resistivity (ρ) measurements on \(\text{Ce}_2\text{AuSi}_3\) to throw light on some of the earlier conclusions [3]. These alloys, crystallizing in a AlB_2-derived hexagonal structure, have been found to exhibit many interesting magnetic characteristics [3]. While the parent Au compound magnetically orders below 4 K, \(\text{Ce}_2\text{CoSi}_3\) is a non-magnetic Kondo lattice. As Au is progressively replaced by Co, the magnetic ordering temperature (T_0) goes through a maximum (around 7 K) as a function of x thereby suggesting that this alloy series is one of the few solid solutions spanning a wide range of Doniach’s magnetic phase diagram [4]. For some intermediate compositions, two magnetic transitions were observed with the data revealing interesting changes in magnetic structure both as a function of x and T. Thus, this alloy series offers several situations to test the theory of [1].

2. Experimental

The samples employed were synthesized as discussed in [3] and characterized by X-ray diffraction. For \(\text{Ce}_2\text{AuSi}_3\), high pressure ρ measurements in the temperature range 1.5–30 K were carried out in a hydrostatic pressure medium up to 17 kbar. For many alloys ($x = 0.0, 0.2, 0.3, 0.4$ and 0.6), ac χ behavior (1.7–15 K) was probed employing a commercial magnetometer at various frequencies (1, 10, 100, 1000 Hz); the ρ behavior as a function of externally applied magnetic field (H) up to 12 T were also tracked at low temperatures (0.6, 2, 5 and 10 K).

3. Results and discussion

In figure 1, we show the ac χ data as a function of (logarithmic) T below 12 K for $x = 0.0$. There is a peak at 3 K consistent with the observation in the heat capacity (C) and dc χ data [3] due to the onset of magnetic ordering. The new finding is that there is an additional peak at about 1.2 K (which could not be tracked in earlier studies [2,3] due to non-accessibility of this T range), establishing the existence of another magnetic transition. In fact two transitions are expected [5] from two crystallographically inequivalent Ce sites for an ordered arrangement of Au and Si ions. There is a frequency dependence of ac χ for both the transitions, which suggests that this material is a spin-glass.

In order to further substantiate our earlier proposal [2] that this compound lies at the low coupling limit, we show in figure 2 the ρ data (normalized to 2 K value) below 20 K at various external pressures. There is a drop in ρ setting in around 10 K, well above T_0 due to the well-known [6] interplay between indirect exchange interaction and the Kondo effect in magnetically ordered Kondo lattices. The main point of emphasis is that there is a shoulder at about 5 K, which arises as an artifact of long range magnetic ordering setting in at 3 K; this shoulder moves to a higher temperature with increasing pressure, say to 6 K at 17 kbar. If this compound lies at the peak or at the right-hand side of the Doniach’s diagram, one would have expected that this shoulder goes to a lower T with increasing pressure. Thus this data may be consistent with our earlier proposal that this compound is situated at the left-hand side of the Doniach’s magnetic phase diagram. This naturally means that, with the Co end member being a non-magnetic Kondo lattice, the present solid solution spans a wide range of 4f-conduction band coupling strength.