AT-algebras and extensions of AT-algebras

HONGLIANG YAO

School of Science, Nanjing University of Science and Technology, Nanjing 210014, People’s Republic of China
Department of Mathematics, Tongji University, Shanghai 200092, People’s Republic of China
E-mail: hlyao@mail.njust.edu.cn

MS received 13 April 2009; revised 14 June 2009

Abstract. Lin and Su classified AT-algebras of real rank zero. This class includes all AT-algebras of real rank zero as well as many C^*-algebras which are not stably finite. An AT-algebra often becomes an extension of an AT-algebra by an AF-algebra. In this paper, we show that there is an essential extension of an AT-algebra by an AF-algebra which is not an AT-algebra. We describe a characterization of an extension E of an AT-algebra by an AF-algebra if E is an AT-algebra.

Keywords. AF-algebra; AT-algebra; AT-algebra; extension; index map.

1. Introduction

During the development of classification of nuclear separable C^*-algebras, a special class of inductive limits of finite direct sums of matrix algebras over T-algebras was classified by Lin and Su [6], where T-algebras are unital essential extensions of $\text{C}(S^1)$ by compact operators K:

$$0 \longrightarrow K \longrightarrow E \longrightarrow \text{C}(S^1) \longrightarrow 0.$$

Each C^*-algebra in this special class is said to be an AT-algebra. One of the important features which makes AT-algebras essentially different from AH-algebras is that the torsion in K_0 does not arise from the torsion parts of certain metric spaces but from nontrivial extensions of $\text{C}(S^1)$ by K. Let A be an AT-algebra. The invariant consists of the abelian semigroup $V(A)$, the Murry–von Neumann equivalence classes of projections in matrices of A, an abelian semigroup $k(A)^+$, some equivalence classes of homotopy classes of hyponormal partial isometries in matrices of A and a homomorphism d from $k(A)^+$ into $V(A)$. The main result of [6] states that the above invariant, together with the class of the identity, is complete for the class of C^*-algebras.

An AT-algebra often becomes an essential extension of an AT-algebra by an AF-algebra. Consequently, a question of whether an essential extension of an AT-algebra by an AF-algebra is an AT-algebra, is raised. In this paper, we show that there is an essential extension of an AT-algebra by an AF-algebra which is not in the class. Recently there have been rapid advances in the study of quasidiagonal extensions of C^*-algebras (c.f. [2]). Tracially quasidiagonal extensions are studied by Lin in [4]. In [1], Brown and Dadarlat show that the index maps δ_0 and δ_1 of a quasidiagonal extension of C^*-algebras are zero.
In [5], Lin and Rørdam show that if E is an extension of an \mathcal{AT}-algebra by an \mathcal{AT}-algebra and E has real rank zero, then E is an \mathcal{AT}-algebra if and only if the index maps are both zero. Accordingly, in this paper, we attempt to describe a characterization of an extension E of an \mathcal{AT}-algebra by an AF-algebra if E is an \mathcal{AT}-algebra via the index maps.

2. \mathcal{AT}-algebra as an essential extension of an \mathcal{AT}-algebra

Let $C(S^1)$ be the continuous functions on the unit circle and let \mathcal{K} be the compact operators on an infinite dimensional separable Hilbert space. \mathcal{T}_k is an essential unital extension of $C(S^1)$ by \mathcal{K} with index $−k ∈ \mathbb{Z}$:

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T}_k \longrightarrow C(S^1) \longrightarrow 0.$$

It is well-known that two extensions with the same index are isomorphic as C^*-algebras. We call these algebras T-algebras. It is obvious that \mathcal{T}_k is isomorphic to $\mathcal{T}_{−k}$. We consider only those \mathcal{T}_k with $k ≥ 0$. We now give another description of \mathcal{T}_k (for $k ≥ 0$). Let S_0 be an unitary in $\mathcal{B}(H)$ with essential spectrum S^1. Then \mathcal{J}_0 is isomorphic to the C^*-subalgebra of $\mathcal{B}(H)$ generated by S_0 and $K(H)$. Let S_1 be the standard unilateral shift operator acting on the Hilbert space $H = l^2$. Then $\mathcal{T}_k (k > 0)$ is isomorphic to the C^*-subalgebra of $\mathcal{B}(H)$ generated by $(S_1)^k$ and $K(H)$.

Lemma 2.1. Let A be a C^*-algebra with an approximate unit of projections, $\{I_\lambda\}_{\lambda \in \Lambda}$ a set of ideals of A. If quotient A/I_λ is a finite C^*-algebra for each $\lambda \in \Lambda$, then $A/ \bigcap_{\lambda \in \Lambda} I_\lambda$ is a finite C^*-algebra.

Proof. Let $\{p_i\}$ be an approximate unit of projections in A and π be the quotient map from A to $A/ \bigcap_{\lambda \in \Lambda} I_\lambda$. Then $\pi (p_i)$ becomes an approximate unit of projections in $A/ \bigcap_{\lambda \in \Lambda} I_\lambda$. For any i, we assume that $v^*v = \pi (p_i)$. There is $w \in p_iAp_i$ such that $\pi (w) = v$. Since $\pi (w^*w) = \pi (p_i)$, $v^*w = p_i + \bigcap_{\lambda \in \Lambda} I_\lambda$. By the hypothesis of the lemma, $uw^* \in p_i + \bigcap_{\lambda \in \Lambda} I_\lambda$, so $ww^* = \pi (w^*w) = \pi (p_i)$, Therefore $A/ \bigcap_{\lambda \in \Lambda} I_\lambda$ is a finite C^*-algebra.

DEFINITION 2.2

Let A be a C^*-algebra with an approximate unit of projections. By the above lemma, there exists the smallest ideal I of A such that A/I is a finite C^*-algebra. We denote this ideal by $I(A)$, and denote A/I by $Q(A)$.

Lemma 2.3. Let $E = \lim_{\rightarrow} (E_n, \phi_n)$ be an inductive limit C^*-algebra, where each E_n is a finite direct sum of matrix algebras over T-algebras, and each connecting map from E_n to E_{n+1} satisfies the following: if $M_\lambda (\mathcal{J}_0)$ is a summand of E_n, then the connecting map restricted to this block vanishes on $M_\lambda (\mathcal{K})$. Then $I(E) = \lim_{\rightarrow} (I(E_n), \phi_n)$ and $Q(E) = \lim_{\rightarrow} (Q(E_n), \tilde{\phi}_n)$, where $\tilde{\phi}_n$ is the *-homomorphism which is induced by ϕ_n.

Proof. It is easy to see that $\phi_n(I(E_n)) \subset I(E_{n+1})$ for each n. Since $\lim_{\rightarrow} (Q(E_n), \tilde{\phi}_n)$ is a finite C^*-algebra, $I(E) \subset \lim_{\rightarrow} (I(E_n), \phi_n)$. It remains to show that $\phi(I(E_n)) \subset I(E)$. We may assume that $E_n = M_\lambda (\mathcal{T}_k)$ and $\phi_{n,\infty} (M_\lambda (\mathcal{K})) \neq 0$. Note that $M_\lambda (\mathcal{K})$ is the minimal ideal of $M_n (\mathcal{T}_k)$, $\phi_{n,\infty}$ is injective on $M_n (\mathcal{T}_k)$. There exists $v ∈ M_n (\mathcal{T}_k)$