Na Cheng · Zi-li Chen · Ying Feng

L- and M-weak compactness of positive semi-compact operators

Received: July 25, 2009 / Accepted: November 20, 2009 – © Springer-Verlag 2010

Abstract. We present some necessary and sufficient conditions for positive semi-compact operators being L-weakly compact and M-weakly compact respectively.

Keywords Banach lattices · Semi-compact operator · M-weakly compact operator · L-weakly compact operator

Mathematics Subject Classification (2000) 46B42 · 47B07 · 47B60

1 Introduction

Let E and F be Banach lattices, and F^+ be the positive cone of F. A continuous operator $T : E \to F$ is said to be semi-compact if for each $\epsilon > 0$, there exists some $u \in F^+$ such that $T(U) \subset [-u, u] + \epsilon V$ where U, V denote the closed unit balls of E and F, respectively. A continuous operator $T : E \to F$ is said to be M-weakly compact whenever $\lim \|Tx_n\| = 0$ holds for every norm
bounded disjoint sequence \(\{x_n\} \) of \(E \). A continuous operator \(T : E \to F \) is said to be \(L \)-weakly compact whenever \(\lim \|y_n\| = 0 \) holds for every disjoint sequence \(\{y_n\} \) in the solid hull of \(T(U) \) (please see [1] for details).

It was known that each \(M \)-weakly compact (\(L \)-weakly compact) operator is semi-compact (see Proposition 3.6.10 of [8] for details). However, a semi-compact operator is not necessarily \(M \)-weakly compact (\(L \)-weakly compact), since each compact operator may not be \(M \)-weakly compact (\(L \)-weakly compact). For example, the operator \(T : \ell_1 \to \ell_\infty \) defined by \(T(a_1, a_2, \cdots) = (\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty a_n, \cdots) = (\sum_{n=1}^\infty a_n)(1, 1, 1, \cdots) \) is a compact operator, but it is neither \(M \)-weakly compact nor \(L \)-weakly compact.

Our objective in this paper is to present some necessary and sufficient conditions for positive semi-compact operators being \(L \)-weakly compact and \(M \)-weakly compact respectively.

We prefer to [1] and [8] for any unexplained terms from the theory of Banach lattices and operators.

2 L-weak compactness of positive semi-compact operators

We start with a characterization for positive semi-compact operators being \(L \)-weakly compact.

Theorem 1 Let \(E \) and \(F \) be nonzero Banach lattices. Then each semi-compact operator \(T : E \to F \) is \(L \)-weakly compact if and only if the norm of \(F \) is order continuous.

Proof Suppose that \(F \) has order continuous norm and \(T : E \to F \) is a semi-compact operator. Let \(U \) and \(V \) denote the closed unit ball of \(E \) and \(F \), \(\{y_n\} \subset F_+ \) be a disjoint sequence in the solid hull of \(T(U) \). Pick a sequence \(\{x_n\} \subset E_+ \) with \(\|x_n\| \leq 1 \) and \(0 \leq y_n \leq |T x_n| \) for all \(n \). As \(T \) is semi-compact, there exists a \(u \in F_+ \) satisfying \(||(T x_n) - u|| < \epsilon \). The equality \(|T x_n| = |T x_n \cup u + (|T x_n| - u)^+| \) implies that \(|T x_n| \in \epsilon V + [0, u] \). For each \(n \), by Riesz’s decomposition property, there exist \(0 \leq u_n \in \epsilon V \) and \(v_n \in [0, u] \) with \(y_n = u_n + v_n \).

Note that \(F \) has order continuous norm and \(\{v_n\} \) is an ordered bounded disjoint sequence, Theorem 12.13 of [1] implies that \(\lim \|v_n\| = 0 \). The inequality \(\|y_n\| \leq \|u_n\| + \|v_n\| \leq \epsilon + \|v_n\| \) implies \(\lim \sup \|y_n\| \leq \epsilon \), hence \(\lim \|y_n\| = 0 \).

On the other hand, suppose that the norm on \(F \) is not order continuous, there exists some \(y \in F \) and a disjoint sequence \(\{y_n\} \subset [0, y] \) which does not converge to zero in norm. For nonzero Banach lattice \(E \), \(E' \neq \{0\} \), choosing \(0 < x' \in E' \), and define \(T : E \to F \) by \(T(x) = x'(x)y \) for each \(x \in E \). Clearly, \(T \) is semi-compact as it is compact (its rank is one). Hence, \(T \) is \(L \)-weakly compact. Note that \(\{y_n\} \) is a disjoint sequence in the solid hull of \(T \) ball(\(E \)) as \(2^{-1} |x'||[0, y] \subset \text{sol}(T \text{ball}(E)) \), together with the \(L \)-weak compactness of \(T \) imply that \(\lim \|y_n\| = 0 \), which is a contradiction. \(\square \)