MAPS TO WEIGHT SPACE IN HIDA FAMILIES

Ravi Ramakrishna

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

e-mail: ravi@math.cornell.edu

(Received 19 January 2014; after final revision 18 July 2014; accepted 25 July 2014)

Abstract. Let \(\bar{\rho} \) be a two-dimensional \(\mathbb{F}_p \)-valued representation of the absolute Galois group of the rationals. Suppose \(\bar{\rho} \) is odd, absolutely irreducible and ordinary at \(p \). Then we show that \(\bar{\rho} \) arises from the irreducible component of a Hida family (of necessarily greater level than that of \(\bar{\rho} \)) whose map to weight space, including conjugate forms, has degree at least 4.

Key words: Galois representation; modular form; Hida theory.

1. Introduction

Let \(p \geq 5 \) be an odd prime and \(f \in S_2(\Gamma_0(Np)) \) a weight two eigenform that is new of level \(Np \) where \(p \nmid N \). Let \(\rho_f \) and \(\bar{\rho}_f \) be the \(p \)-adic and mod \(p \) representations of \(G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) associated to \(f \). We assume \(\bar{\rho}_f \) is absolutely irreducible so it is well-defined. As \(p \) is in the level of \(f \), the eigenvalue of \(U_p \) is \(\pm 1 \) and \(\rho_f \) is ordinary at \(p \), in particular \(\rho_f|_{G_p=\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} = \begin{pmatrix} \psi \epsilon & * \\ 0 & \psi^{-1} \end{pmatrix} \) where \(\epsilon \) is the \(p \)-adic cyclotomic character and \(\psi \) is unramified of order 1 or 2. We know that \(f \) belongs to a Hida family, by which in this paper we mean the irreducible component (of the spectrum) of the ordinary (arbitrary weight) Hecke algebra of tame level \(N \) containing \(f \). We will abuse the term ‘Hida family’ to refer to both the ring \(\mathbb{T} \) and \(T = \text{Spec}(\mathbb{T}) \). When we say the Hida family contains a point, we are referring to a map \(\text{Spec}(R) \to T \) for a suitable extension \(R \) of \(\mathbb{Z}_p \). Dimitrov and Ghate refer to the collection of all components at a fixed tame

\(^1\)The author would like to thank the Tata Institute of Fundamental Research for its hospitality while this paper was completed.
level having residual global representation $\bar{\rho}_f$ as its *Hida community*. It is well-known that the Hida family containing f is a finite flat $\Lambda = \mathbb{Z}_p[[1+p\mathbb{Z}_p]] \simeq \mathbb{Z}_p[[T]]$-algebra T that is an integral domain possessing homomorphisms $T \to \mathbb{Z}_p$ that correspond to classical eigenforms of weights $k \geq 2$ (and sometimes weight $k = 1$). If the reader prefers, rather than f, she may keep in mind the example of an elliptic curve with semistable reduction at p.

While it is known that f determines T, little is known about how to recover the explicit information of the family T from $f = \sum_{n=1}^{\infty} a_n q^n$. C. Franc has pointed out that given two eigenforms g and h of level M that are congruent mod p, there seems to be no known algorithm to determine whether g and h are in the same family!

For f with split multiplicative reduction, the p-adic L-function $L_p(f,s)$ has a trivial zero at $s = 1$. In the elliptic curve case Mazur, Tate and Teitelbaum conjectured a relation between the classical L-function $L(E,1)$ and $L'_p(E,1)$. Recall the L-invariant of a semistable at p elliptic curve E with Tate period q_E is

$$L_E = \frac{\log q_E}{v_p(q_E)}.$$

In [MTT] it was conjectured

$$L_p(E,1) = L_E \frac{L(E,1)}{\Omega_E}$$

where Ω_E is the real period of E. Greenberg and Stevens proved this conjecture in [GS] using Hida theory and by relating L_E to the derivative of the $Frob_p$-eigenvalue in the Hida family. Indeed, their result applies to f split multiplicative but in this more general case computing L_f explicitly is very involved. See for instance [CST]. The L-invariant contains other interesting information. In [GS2] Greenberg and Stevens gave a simple criterion in terms of L_f that guarantees the existence of another weight 2 point in T whose level is prime to p. Below is a slight generalization of their result, Proposition 5.1 of [GS2].

Theorem 1. *(Greenberg-Stevens)* Let $p \geq 5$ be a prime and $f \in S_2(\Gamma_0(Np))$ have multiplicative reduction at p. Suppose $\bar{\rho}_f$ is absolutely irreducible as a $G_{\mathbb{Q}}$-module and that $v_p(L_f) < 1$. Then the Hida family T containing f contains another weight 2 form of level N prime to p. In particular the map $\Lambda = \mathbb{Z}_p[[T]] \to T$ is not an isomorphism.

The differences between the result of [GS2] and Theorem 1 above are that we state the result along a particular Hida family (irreducible component), work with modular forms