AN ELEMENTARY PROOF OF PÓLYA–VINOGRAVODOV'S INEQUALITY, II

ANASTASIOS D. SIMALARIDES (Greece)

Abstract

Let χ be a primitive character mod k, $k > 2$. In [1], the following elementary estimate

$$s(\chi) \leq \begin{cases} \frac{1}{\pi} \sqrt{k} \log k + \left(1 - \frac{\log 2}{\pi}\right) \sqrt{k} + \frac{1}{2}, & \text{if } \chi(-1) = 1, \\ \frac{1}{\pi} \sqrt{k} \log k + \sqrt{k} + \frac{1}{2}, & \text{if } \chi(-1) = -1, \end{cases}$$

was given, where

$$s(\chi) = \max_{r \geq 1} \left| \sum_{n=1}^{r} \chi(n) \right|$$

by definition. In the present note we sharpen this estimate by a factor $3/4$ in the case of an even primitive character χ, by improving upon the proof given in [1] in a way which does not alter the elementary character of the method.

We shall prove the following

Theorem 1. Let χ be an even primitive character mod k, $k > 2$. Then

$$s(\chi) \leq \frac{3}{4\pi} \sqrt{k} \log k + \left(2 - \frac{\log 2}{\pi} - \frac{\gamma}{2\pi}\right) \sqrt{k} + 1,$$

where $\gamma = 0.577\ldots$ is Euler's constant.

Proof. Start with the following identity proved in [1]

$$G(1, \chi) \sum_{n=1}^{r} \chi(n) = \sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k}}{\sin \frac{\pi m}{k}} - \sum_{m \leq \frac{k}{2}} \chi(m)$$

$$+ \sum_{m \leq \frac{k}{2}} \chi(m) \cos \frac{2\pi rm}{k}.$$

Mathematics subject classification numbers, 11L40.
Key words and phrases. Pólya–Vinogradov's inequality, character sums.
We need the following lemma.

Lemma 1. Let \(\chi \) be an even primitive character mod \(k \), \(k > 2 \), and let \(t \) be a non-negative integer. Then

\[
\sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} = \sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos^{1+2t} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} + \Delta_t,
\]

where, \(|\Delta_t| \leq t\sqrt{k} \).

Proof. We prove the lemma by induction on \(t \). The lemma is trivially true for \(t = 0 \). Assume that it is true for \(t > 0 \). It is easily seen that

\[
\frac{\sin \frac{2\pi rm}{k} \cos^{1+2t} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} = \frac{\sin \frac{2\pi rm}{k} \cos^{1+2(t+1)} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} - \cos \frac{2\pi rm}{k} \cos^{2+2t} \frac{\pi m}{k} \frac{\pi (2r - 1)m}{k} \cos^{1+2t} \frac{\pi m}{k},
\]

in consequence

\[
\sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos^{1+2t} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} = \sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos^{1+2(t+1)} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} - \sum_{m \leq \frac{k}{2}} \chi(m) \cos \frac{\pi (2r - 1)m}{k} \cos^{1+2t} \frac{\pi m}{k}.$

Induction hypothesis implies then

\[
(2) \quad \sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} - \sum_{m \leq \frac{k}{2}} \chi(m) \frac{\sin \frac{2\pi rm}{k} \cos^{1+2(t+1)} \frac{\pi m}{k}}{\sin \frac{\pi m}{k}} =
\]

\[
- \sum_{m \leq \frac{k}{2}} \chi(m) \cos \frac{2\pi rm}{k} \cos^{2+2t} \frac{\pi m}{k} + \sum_{m \leq \frac{k}{2}} \chi(m) \cos \frac{\pi (2r - 1)m}{k} \cos^{1+2t} \frac{\pi m}{k} + \Delta_t.
\]

The successive application of the identity

\[2 \cos x \cos y = \cos(x + y) + \cos(x - y)\]

shows that both the sums in the right member of (2) are linear combinations of Gaussian sums; both combinations are \(\leq \sqrt{k}/2 \) in absolute value. It follows that the absolute value of the right member of (2) is not greater than

\[
\frac{\sqrt{k}}{2} + \frac{\sqrt{k}}{2} + |\Delta_t| \leq \frac{\sqrt{k}}{2} + \frac{\sqrt{k}}{2} + t\sqrt{k} = (t + 1)\sqrt{k}.
\]