A CLASS OF OPERATORS ON L^2_D. II

N. S. FAOUR (Beirut)

Abstract. Let D be the open unit disk in \mathbb{C}, and L^2_D the space of quadratic integrable, harmonic functions defined on D. Let $\varphi : \overline{D} \to \mathbb{C}$ be a function in $L^\infty(D)$ with the property that $\varphi(b) = \lim_{r \to 0, x \in \delta D} \varphi(x)$ for all $b \in \partial D$. Define the operator C_φ on L^2_D as follows: $C_\varphi(f) = Q(\varphi \cdot f)$, where Q is the orthogonal projection of $L^2(D)$ onto L^2_D. In this paper it is shown that if C_φ is Fredholm, then φ is bounded away from zero on a neighborhood of ∂D. Also, if C_φ is compact, then $\varphi(\partial D) \equiv 0$, and the commutator ideal of $\tau(D)$ is $K(D)$, where $\tau(D)$ denotes the norm closed subalgebra of the algebra of all bounded operators on L^2_D generated by $\{ C_\psi : \psi \in C(\overline{D}) \}$, and $K(D)$ is the ideal of compact operators on L^2_D.

Finally, the spectrum of classes of operators defined on L^2_D is characterized.

Introduction

L^2_D is the space of all harmonic functions f defined on the open unit disk \overline{D} such that they are square integrable with respect to the area measure $dA = \frac{1}{\pi} dydx$. Following similar arguments to that used by Conway [3, p. 175] it can be shown that L^2_D is a closed subspace of $L^2(D)$ with orthonormal basis $\sqrt{\frac{1}{\pi}}, \sqrt{\frac{2}{\pi}}z, \sqrt{\frac{3}{\pi}}z^2, \ldots$. Moreover, it can be easily established that for each $\lambda \in D$ there is a unique k_λ in L^2_D such that $f(\lambda) = \langle f, k_\lambda \rangle$. $f \in L^2_D$, k_λ is the reproducing kernel of L^2_D. The Bergman space A^2 is the space of all analytic functions f defined on D and square integrable with respect to the area measure. It is known that A^2 is a closed subspace of $L^2(D)$ with orthonormal basis $\{ \sqrt{n+1}z^n \}_{n \geq 0}$. The space $L^2_D = A^2 \oplus \overline{A}_0$, where \overline{A}_0 is the space of all complex conjugates of functions in A^2 which vanish at the origin.

Let $\varphi \in L^\infty(D)$ and Q be the orthogonal projection of $L^2(D)$ onto L^2_D. Define the operator C_φ on L^2_D by $C_\varphi(f) = Q(\varphi \cdot f)$. It can be easily established that $C_{\alpha \varphi + \beta \psi} = C_\alpha C_{\varphi}$, $\alpha, \beta \in \mathbb{C}$, and $C_\varphi^* = C_{\overline{\varphi}}$, where C_φ^* is the adjoint of C_φ, $\overline{\varphi}$ is the complex conjugate of $\varphi, \psi \in L^\infty(D)$.

In Section 1 of this paper, it is shown that if $\varphi \in L^\infty(D)$ with the property that $\varphi(b) = \lim_{r \to 0, x \in \delta D} \varphi(x)$ for all $b \in \delta D$ (so that $\varphi(\partial D)$ is continuous), and C_φ is Fredholm, then φ is bounded away from zero on a neighborhood of ∂D. Also, if C_φ is compact, then $\varphi(\partial D) \equiv 0$. The converse of the above results appeared in [5]. Finally, it is proved in this paper that the commutator
ideal of \(\tau(D) \) is \(K(D) \), where \(\tau(D) \) denotes the norm closed subalgebra of the algebra of all bounded operators on \(L^2_h \) generated by \(\{ C_\psi : \psi \in C(D) \} \), and \(K(D) \) is the ideal of compact operators on \(L^2_h \). Similar results concerning Toeplitz operators defined on the Bergman space \(A^2 \) appeared in [2], and [8]. In Section 2, the spectrum of classes of operators defined on \(L^2_h \) is determined.

1. Results

Theorem 1.1. Let \(\varphi : \overline{D} \to \mathbb{C} \) be a function in \(L^\infty(D) \) with the property that \(\varphi(b) = \lim_{r \to 0} \frac{\varphi(rz) + \varphi(r \bar{z})}{2} \) for all \(b \in \partial D \). If \(C_\varphi \) is Fredholm, then \(\varphi \) is bounded away from zero on a neighborhood of \(\partial D \).

To prove Theorem 1.1 the following is needed.

Lemma 1.1. Let \(k_\alpha \) be the reproducing kernel of \(L^2_h \). Then

\[
k_\alpha(z) = 2 \text{Re} \left((1 - \bar{\alpha}z)^{-2} \right) - 1, \quad \alpha, z \in D.
\]

Proof. Let \(\{ e_n \}_{n \geq 0} = \{ \sqrt{n + 1} z^n \} \) and \(\{ e_n \}_{n \geq 1} = \{ \sqrt{n + 1} \alpha^n \} \). Utilizing the facts that \(L^2_h \) is a separable Hilbert space, and \(\ldots, \sqrt{3 \pi^2}, \sqrt{2 \pi}, \sqrt{\pi}, \sqrt{2}, \sqrt{3}, \ldots \) is an orthonormal basis of \(L^2_h \), it follows that

\[
k_\alpha = \sum_{n \geq 0} (k_\alpha, e_n) e_n + \sum_{n \geq 1} (k_\alpha, \bar{e}_n) \bar{e}_n.
\]

Note that for \(n \geq 0 \), \((k_\alpha, e_n) = \sqrt{n + 1} \pi^n \), and for \(n \geq 1 \), \((k_\alpha, \bar{e}_n) \) is equal to \(\sqrt{n + 1} \alpha^n \). Thus,

\[
k_\alpha(z) = \sum_{n \geq 0} (n + 1)(\alpha z)^n + \sum_{n \geq 1} (n + 1)(\alpha \bar{z})^n = (1 - \alpha z)^{-2} - (1 - \alpha \bar{z})^{-2} - 1 = 2 \text{Re} \left((1 - \bar{\alpha}z)^{-2} \right) - 1. \quad \square
\]

Let \(\{ \lambda_n \}_{n \geq 1} \) be a sequence in \(D \) which converges to some \(\lambda \in \partial D \). For each \(m \), define

\[
f_m(z) = k_{\lambda m}(z)/(k_{\lambda m}(\lambda_m))^{\frac{1}{2}}
\]

Acta Mathematica Hungarica 84, 1999