ON THE ISOSELES ORTHOGONALLY EXPONENTIAL MAPPINGS

J. BRZDĘK (Rzeszów)

Abstract. We prove that if X is a real linear normed space and $\dim X > 1$, then, for every isosceles orthogonally exponential mapping f of X into a division ring, either $f(X \setminus \{0\}) = \{0\}$ or $0 \not\in f(X)$. As a consequence of this fact we obtain the following theorem: If X is not an inner product space and $\dim X > 2$, then every isosceles orthogonally exponential mapping of X into a (commutative) field is exponential. We also generalize some results concerning the orthogonally additive mappings.

Let X be a real normed space. Define a binary relation $\perp \subset X^2$ by

$$x \perp y \quad \text{if} \quad ||x + y|| = ||x - y||.$$

The relation \perp is called the isosceles orthogonality (see [10] and [11]).

Let K be a ring. A mapping $f : X \to K$ is called exponential if

(1) $f(x + y) = f(x)f(y)$ for every $x, y \in X$;

it is called isosceles orthogonally exponential if

(2) $f(x + y) = f(x)f(y)$ whenever $x \perp y$.

We start with some lemmas.

Lemma 1. Let X be a real linear normed space with $\dim X > 1$. Then, for every $x \in X$, there exists $y \in X$ with $||x|| = ||y||$ and $x \perp y$.

Proof. We argue in the same way as in the proof of Theorem in [10] (p. 270). □

Lemma 2. Let X be as in Lemma 1, K a division ring, and $f : X \to K$ a solution of (2). Then the following four conditions hold:

(i) If $f(x) \neq 0$, then $f\left(\frac{1}{2}y\right) f\left(-\frac{1}{2}y\right) \neq 0$ for every $y \in X$ with $||x|| = ||y||$ and $x \perp y$.

(ii) If $f(x) \neq 0$, then $f\left(\frac{1}{2}x\right) \neq 0$.

(iii) If $f(x) \neq 0$, then $f(-x) \neq 0$.

0236-5294/0/$5.00 © 2000 Akadémiai Kiadó, Budapest
(iv) If \(f(x) \neq 0 \), then \(f(2x) \neq 0 \).

Proof. Fix \(x \in X \) such that \(f(x) \neq 0 \). The case \(x = 0 \) is trivial. So suppose that \(x \neq 0 \).

(i), (ii) Take \(y \in X \) with \(\|x\| = \|y\| \) and \(x \perp y \). Then \(\frac{1}{2}(x+y) \perp \frac{1}{2}(x-y) \) and, by (2),

\[
f(x) = f \left(\frac{1}{2}(x+y) + \frac{1}{2}(x-y) \right) = f \left(\frac{1}{2}x \right) f \left(\frac{1}{2}y \right) f \left(\frac{1}{2}x \right) f \left(-\frac{1}{2}y \right).
\]

Hence \(f \left(\frac{1}{2}y \right) f \left(-\frac{1}{2}y \right) f \left(\frac{1}{2}x \right) \neq 0 \). Thus Lemma 1 completes the proof.

(iii) On account of (ii), \(f \left(\frac{1}{2}x \right) \neq 0 \). According to Lemma 1 there is \(y \in X \) with \(\|x\| = \|y\| \) and \(x \perp y \). Note that (i) and (ii) imply

\[
f \left(\frac{1}{2}y \right) f \left(-\frac{1}{2}y \right) f \left(\frac{1}{4}y \right) f \left(-\frac{1}{4}y \right) \neq 0
\]

and consequently, by (i), \(f \left(-\frac{1}{4}x \right) \neq 0 \) (because \(\frac{1}{2}y = \|\frac{1}{2}x\| \) and \(\frac{1}{2}y \perp \frac{1}{2}x \)). Thus

\[
f \left(-\frac{1}{2}x \right) = f \left(\frac{1}{4}(-x-y) + \frac{1}{4}(-x+y) \right)
\]

\[
= f \left(-\frac{1}{4}x \right) f \left(-\frac{1}{4}y \right) f \left(-\frac{1}{4}x \right) f \left(\frac{1}{4}y \right) \neq 0.
\]

Hence

\[
f(-x) = f \left(-\frac{1}{2}x \right) f \left(-\frac{1}{2}y \right) f \left(-\frac{1}{2}x \right) f \left(\frac{1}{2}y \right) \neq 0.
\]

(iv) Take \(y \) as before. Then, by (i)–(iii) and (2),

\[
f(y) = f \left(\frac{1}{2}(y+x) + \frac{1}{2}(y-x) \right) = f \left(\frac{1}{2}y \right) f \left(\frac{1}{2}x \right) f \left(\frac{1}{2}y \right) f \left(-\frac{1}{2}x \right) \neq 0.
\]

Thus, according to (iii), \(f(-y) \neq 0 \) and consequently

\[
f(2x) = f(x+y+x-y) = f(x)f(y)f(x)f(-y) \neq 0.
\]

Lemma 3. Let \(X, K \) and \(f \) be as in Lemma 2. Suppose that \(x \in X \) and \(f(x) = 0 \). Then \(f(z) = 0 \) for every \(z \in X \) with \(\|z\| = \|x\| \).

Proof. Take \(z \in X \) with \(\|z\| = \|x\| \). According to Lemma 2(ii), \(f(2x) = 0 \). Further, \(x + z \perp x - z \) and \(x + z \perp z - x \). Thus, by (2),

\[
f(x+z)f(x-z) = f(2x) = 0, \quad f(2z) = f(x+z)f(z-x).
\]

Acta Mathematica Hungarica 87, 2000