ASYMPTOTIC DENSITY AND THE ASYMPTOTICS OF PARTITION FUNCTIONS

M. B. NATHANSON (Bronx)*

Abstract. Let A be a set of positive integers with $\gcd(A) = 1$, and let $p_A(n)$ be the partition function of A. Let $c_0 = \pi \sqrt{2/3}$. If A has lower asymptotic density α and upper asymptotic density β, then $\liminf \log p_A(n)/c_0 \sqrt{n} \geq \sqrt{\alpha}$ and $\limsup \log p_A(n)/c_0 \sqrt{n} \leq \sqrt{\beta}$. In particular, if A has asymptotic density $\alpha > 0$, then $\log p_A(n) \sim c_0 \sqrt{\alpha n}$. Conversely, if $\alpha > 0$ and $\log p_A(n) \sim c_0 \sqrt{\alpha n}$, then the set A has asymptotic density α.

1. The growth of $p_A(n)$

Let A be a nonempty set of positive integers. The counting function $A(x)$ of the set A counts the number of positive elements of A that do not exceed x. Then $0 \leq A(x) \leq x$, and so $0 \leq A(x)/x \leq 1$ for all x. The lower asymptotic density of A is

$$d_L(A) = \liminf_{x \to \infty} \frac{A(x)}{x}.$$

The upper asymptotic density of A is

$$d_U(A) = \limsup_{x \to \infty} \frac{A(x)}{x}.$$

We have $0 \leq d_L(A) \leq d_U(A) \leq 1$ for every set A. If $d_L(A) = d_U(A)$, then the limit

$$d(A) = \lim_{x \to \infty} \frac{A(x)}{x}$$

exists, and is called the asymptotic density of the set A.

A partition of n with parts in A is a representation of n as a sum of not necessarily distinct elements of A, where the number of summands is unrestricted. The summands are called the parts of the partition. The partition function $p_A(n)$ counts the number of partitions of n into parts belonging to

* This work was supported in part by grants from the PSC-CUNY Research Award Program and the NSA Mathematical Sciences Program.

0236-5294/0/5.00 © 2000 Akadémiai Kiadó, Budapest
the set A. Two partitions that differ only in the order of their parts are counted as the same partition. We define $p_A(0) = 1$ and $p_A(-n) = 0$ for $n \geq 1$.

The partition function for the set of all positive integers is denoted $p(n)$. Clearly, $0 \leq p_A(n) \leq p(n)$ for every integer n and every set A. A classical result of Hardy and Ramanujan [4] and Uspensky [11] states that

$$\log p(n) \sim c_0\sqrt{n}, \quad \text{where} \quad c_0 = \pi \sqrt{\frac{2}{3}} = 2\sqrt{\frac{\pi^2}{6}}.$$

Erdős [2] has given an elementary proof of this result.

Let $\gcd(A)$ denote the greatest common divisor of the elements of A. If $d = \gcd(A) > 1$, consider the set $A' = \{a/d : a \in A\}$. Then A' is a nonempty set of positive integers such that $\gcd(A') = 1$, and

$$p_A(n) = \begin{cases} 0 & \text{if } n \not\equiv 0 \pmod{d}, \\ p_{A'}(n/d) & \text{if } n \equiv 0 \pmod{d}. \end{cases}$$

Thus, it suffices to consider only partition functions for sets A such that $\gcd(A) = 1$.

In this paper we investigate the relationship between the upper and lower asymptotic densities of a set A and the asymptotic behavior of $\log p_A(n)$. In particular, we give a complete and elementary proof of the theorem that, for $\alpha > 0$, the set A has density α if and only if $\log p_A(n) \sim c_0\sqrt{\alpha n}$. This result was stated, with a sketch of a proof, in a beautiful paper of Erdős [2].

Many other results about the asymptotics of partition functions can be found in Andrews [1, Chapter 6] and Odlyzko [8].

2. Some lemmas about partition functions

Lemma 1. Let A be a set of positive integers. If $p_A(n_0) \geq 1$, then $p_A(n + n_0) \geq p_A(n)$ for every nonnegative integer n.

Proof. The inequality is true for $n = 0$, since $p_A(n_0) \geq 1 = p_A(0)$. We fix one partition $n_0 = a'_1 + \cdots + a'_r$. Let $n \geq 1$. To every partition $n = a_1 + \cdots + a_k$ we associate the partition

$$n + n_0 = a_1 + \cdots + a_k + a'_1 + \cdots + a'_r.$$

This is a one-to-one map from partitions of n to partitions of $n + n_0$, and so $p_A(n) \leq p_A(n + n_0)$.

Acta Mathematica Hungarica 87, 2000