L_p-ESTIMATES FOR SOLUTIONS TO THE INITIAL BOUNDARY-VALUE PROBLEM FOR THE GENERALIZED STOKES SYSTEM IN A BOUNDED DOMAIN

V. A. Solonnikov

We consider the initial boundary-value problem

\[\frac{\partial \vec{v}}{\partial t} + A(x, t, \partial / \partial x) \vec{v} + \nabla p = f(x, t), \]

\[\nabla \cdot \vec{v} = 0, \quad x \in \Omega \subset \mathbb{R}^n, \quad t \in (0, T), \]

\[\vec{v}(x, 0) = \vec{v}_0(x), \quad \vec{v}(x, t)|_{x \in S} = \vec{a}(x, t) \]

in a bounded domain \(\Omega \subset \mathbb{R}^n, n \geq 2 \), with boundary \(S = \partial \Omega \subset C^3 \) consisting of \(m \) connected components \(S_k, k = 1, \ldots, m \). If \(A = -\Delta I \), then (1.1), (1.2) is the Stokes system. The main result of the paper is the proof of the solvability of the problem (0.1)–(0.3) in anisotropic Sobolev spaces. Bibliography: 23 titles.

§ 1. Introduction

We consider the initial boundary-value problem

\[\frac{\partial \vec{v}}{\partial t} + A(x, t, \partial / \partial x) \vec{v} + \nabla p = f(x, t), \]

\[\nabla \cdot \vec{v} = 0, \quad x \in \Omega \subset \mathbb{R}^n, \quad t \in (0, T), \]

\[\vec{v}(x, 0) = \vec{v}_0(x), \quad \vec{v}(x, t)|_{x \in S} = \vec{a}(x, t) \]

in a bounded domain \(\Omega \subset \mathbb{R}^n, n \geq 2 \), with boundary \(S = \partial \Omega \subset C^3 \) consisting of \(m \) connected components \(S_k, k = 1, \ldots, m \), so that \(\mathbb{R}^n \setminus \overline{\Omega} = \Omega_1 \cup \ldots \cup \Omega_{m-1} \cup \Omega_m \), where \(\Omega_1, \ldots, \Omega_{m-1} \) are bounded domains with boundaries \(\partial \Omega_k = S_k, k = 1, \ldots, m-1 \), \(\Omega_m \) is an “exterior” domain, and \(\partial \Omega_m = S_m \). The vector field \(\vec{v}(x, t) = (v_1, \ldots, v_n) \) and the function \(p(x, t) \) are unknown. We denote by \(A(x, t, \partial / \partial x) \) a matrix elliptic-type differential operator with real coefficients depending on \(x \) and \(t \). The principle part of the operator containing the second-order derivatives is denoted by \(A_0 \). We assume that for all \(x \in \overline{\Omega}, t \in [0, T], \xi \in \mathbb{R}^n \) the matrix \(A_0(x, t, i\xi) \) is positive-definite, i.e.,

\[C^{-1}|\xi|^2|\eta|^2 \leq A_0(x, t, i\xi)\eta \cdot \eta \leq C|\xi|^2|\eta|^2 \quad \forall \xi, \eta \in \mathbb{R}^n \]

for some \(C > 0 \) independent of \(\xi \) and \(\eta \). If \(A = -\Delta I \), then the system (1.1), (1.2) is the Stokes system. More general systems appear in the linearization of the equation of motion of non-Newtonian liquids [1, 2].

Translated from Problemnye Matematicheskogo Analiza, No. 21, 2000, pp. 211–263.
The main result of this paper is to prove the solvability of the problem (1.1)–(1.3) in anisotropic Sobolev spaces. We recall the required definitions. Let G be a domain in \mathbb{R}^n with smooth boundary. By $W^k_p(G)$, $p > 1$, where k is an integer, we mean the space of functions having generalized derivatives of order up to k: $\mathcal{D}^j u \in L_p(G)$, $0 \leq |j| \leq k$, with the norm
\[
\|u\|_{W^k_p(G)}^p = \sum_{i,j \leq k} \int_G |\mathcal{D}^j u(x)|^p \, dx.
\]

We assume that $W^0_p(G) = L_p(G)$. The principle part of the norm containing only the kth order derivatives is denoted by $\|u\|_{W^k_p(G)}$:
\[
\|u\|_{W^k_p(G)} = \left(\sum_{|j|=k} \int_G |\mathcal{D}^j u(x)|^p \, dx \right)^{1/p}.
\]

If $l = [l] + \lambda$, $0 < \lambda < 1$, then $W^l_p(G)$ is the space with the norm
\[
\|u\|_{W^l_p(G)}^p = \|u\|_{W^{[l]}_p(G)}^p + \|u\|_{\tilde{W}^l_p(G)}^p,
\]
where
\[
\|u\|_{\tilde{W}^l_p(G)} = \sum_{|j|=|l|} \int_G \int_{G_j} \frac{|\mathcal{D}^j u(x) - \mathcal{D}^j u(y)|^p \, dx \, dy}{|x-y|^{n+pl}}.
\]

If l is not an integer, then this space coincides with the Besov space $B^l_p(G)$. However, $B^l_p(G) \neq W^l_p(G)$ if l is an integer and $p \neq 2$ (cf. [3]). By $\tilde{W}^l_p(G)$ we mean the space of functions admitting the zero extension to $\mathbb{R}^n \setminus G$ such that the extended function is of the same class, and
\[
\|u\|_{\tilde{W}^l_p(G)} = \|u\|_{W^l_p(\mathbb{R}^n)} \quad (u(x) = 0, \quad x \in \mathbb{R}^n \setminus G).
\]

If $u \in W^l_p(G)$, then $\mathcal{D}^j u|_{\partial G} \in W^{l-j-1/p}_{p}((\partial G)$ for $l-j-1/p > 0$ ($\mathcal{D}^j u|_{\partial G} \in B^{l-j-1/p}_{p}(\partial G)$ if $l-j-1/p$ is an integer). On ∂G, as well as on other smooth manifolds, the norms in the Sobolev spaces are defined with the help of local charts and partitions of unity in a standard way.

By an anisotropic space $W^{l/2}_p(G \times (0, T))$ we mean the space of functions $u(t,x)$, $x \in G$, $t \in (0, T)$, with the finite norm
\[
\|u\|_{W^{l/2}_p(G \times (0, T))}^p = \int_0^T \|u(\cdot, t)\|_{W^l_p(G)}^p \, dt + \int_G \|u\|_{W^{l/2}_p(0, T)}^p \, dx.
\]

In other words,
\[
W^{l/2}_p(G \times (0, T)) = L_p(0, T; W^l_p(G)) \cap L_p(G; W^{l/2}_p(0, T)) = L_p(0, T; W^l_p(G)) \cap W^{l/2}_p(0, T; L_p(G)).
\]

If $u \in W^{l/2}_p(G \times (0, T))$, $|j| + 2k \leq l$, then
\[
\mathcal{D}^j_x \mathcal{D}^k_t u \in W^{l-|j|-2k, (1/2)(l-|j|-2k)}_p(G \times (0, T)).
\]