Workshop Report

Scale-up of Adhesive Transdermal Drug Delivery Systems


Received April 3, 1997; accepted April 11, 1997

KEY WORDS: SUPAC; adhesive transdermal systems; scale-up; post approval changes.

INTRODUCTION

In order to control the scale-up of transdermal systems, the pharmaceutical scientist must understand the formulation and manufacturing attributes as well as variables present in the formulation components of the product that may affect the reproducibility of release of the active drug substance to the stratum corneum and epidermis. Changes in formulation composition involving adhesives, solvents, viscosity modifying agents and changes in the critical semipermeable films or laminates of the transdermal systems may have significant effect on drug release. This requires that critical manufacturing process ranges be validated and that discriminating in-process and finished product tests be developed in order to assure control and reproducibility of the finished product. In addition, the influence of the variability in formulation components needs to be investigated and understood.

Transdermal Drug Delivery Systems (TDS) have differing release mechanisms based on differences in composition and fabrication. Unfortunately, there is little standardization of terminology to describe TDS type or release mechanism. The USP has begun to develop nomenclature and terminology based on TDS description and release mechanism but many systems appear to be hybrids of the proposed categories. In response to this, the workshop group proposed that all TDS systems be categorized broadly as: 1) liquid form-fill and seal, 2) peripheral adhesive, or 3) solid matrix systems. (See Glossary of Terms.) The latter two categories include the subcategories of monolithic, matrix, multi-laminate and drug-in-adhesive systems. In all three major categories, the drug substance could be in solution or a suspension.

COMPOSITIONAL VARIABLES

Transdermal delivery systems typically contain, in addition to the drug(s), vehicles such as oils, alcohols, glycerin, water, fatty acid esters, surfactants and may also contain other fillers or excipients such as lactose, silicon dioxide, celluloses and...
Adhesive Transdermal Drug Delivery Systems

cross-linking agents. During scale-up, adjustments in the levels of these components may be made in order to maintain proper drug release and/or product adhesion/wear characteristics while minimizing irritation.

In addition, the TDS platform will contain several materials such as backing film, peelable liner, etc. which have inherent lot to lot variability and may influence drug release, product wearability or product stability. Thus, the pharmaceutical scientist must understand the relationship between product components and product excipients in order to reproducibly perform scale-up of the product.

Special attention is required of the adhesive composition since there is often intimate contact of the adhesive with the drug or other excipients that may alter the properties of the adhesive and/or may influence the release of drug. There are data to show the effect of adhesive type, e.g. silicone rubber or polysobutylene on the solubility of the drug in the adhesive and on the diffusion coefficient of the drug within the adhesive matrix. This interaction can affect the rate and extent of drug release from the transdermal system. The adhesive/drug interaction is not the only formulation parameter which can affect drug release. Others are vehicle and filler composition and the porosity, tortuosity and thickness of the matrix layer.

No a priori allowable range in excipients or platform materials was established by the workshop group. Instead emphasis was placed on knowledge of the interplay between each product component and product performance. This knowledge should reside in a formulation development report which establishes a working range of system components/composition based upon their impact on key product characteristics such as wearability, adhesive properties, and drug release/stability.

The workshop concluded that for each TDS, the development report should identify those excipients/components which have minor impact on system functionality or performance and those that are critical. An allowable operating range for non-critical excipients/components should be documented. Critical components and/or excipients should be tightly controlled and the allowable range should be clearly defined by experimental data showing the impact of change on some performance or system attribute such as drug crystallinity, solubility, wearability/adhesion, drug release or system stability.

PROCESS VARIABLES

Manufacture of transdermal systems typically involves several unit operations. Drug, excipients and polymers are often mixed, then coated on a platform substrate before being “dried” to remove excess solvent. Alternatively, in some systems a drug/excipient/solvent mixture is dispensed for a form, fill and seal type system. Many systems are laminated to form their multi-layer structure. Large rolls of bulk transdermal film components are slit and converted to final rollstock prior to punching and pouching.

For each unit operation a series of key variables to control and key properties to measure (to assess control) have been delineated and are found in Table 1.

Even seemingly unimportant components of a transdermal delivery system can impact on system performance and thus need to be well characterized. Similarly, the interplay of solvents/liquids and excipients needs to be evaluated as variability may impact the degree of plasticization, cross-linking or cause the formation of a eutectic mixture or crystallization thereby causing a significant impact on drug delivery, system adhesion or wearability.

Transdermal delivery systems, like other pharmaceutical drug products, benefit greatly from use of in-process controls as an assurance mechanism of finished product consistency. A TDS should be well controlled through a series of rapid, simple limit tests that correlate to a known performance parameter. These tests and procedures should become apparent during the development phase and be available to monitor and control scale-up and post-approval changes. These tests should be used in conjunction with calibrated equipment with documented Installation Qualification, Operational Qualification, and Performance Qualification (IQ/OQ/PQ).

As noted in Table 1, parameters which may need to be controlled include solids content, drug content, residual solvent level, viscosity and dimensional accuracy. These are affected by mixer type, mixing time, coating rate, drying rate and temperature, line speed and tooling accuracy (wear). Hence, these latter parameters should be well controlled and monitored as determined by product and process characterization.

IN VITRO TESTS FOR TRANSDERMAL SYSTEMS

In vitro drug release testing is commonly used to characterize transdermal systems and is a basic quality control tool used along with stability data to control scale-up and post-approval changes. The USP has established three different in vitro drug release tests. These are 1) Paddle over disk (Apparatus 5), 2) Cylinder method (Apparatus 6), and 3) Reciprocating disk method (Apparatus 7) (1).

The Paddle over disk method is the most widely used based on its simplicity and reproducibility, but any of the remaining apparatus can be used if justified with data to show discrimination and reproducibility. Typically, any in vitro release test should be conducted for a duration sufficient to exceed 100% total drug delivered in vivo and a minimum of three to four test points to reflect the release profile. Three levels of acceptance are specified with each level requiring an increased sample population similar to Level 1, Level 2, and Level 3 testing for oral dosage forms. It is acknowledged that these tests typically do not correlate to in vivo drug release but help in quality control of the finished TDS.

In vitro skin permeation is an important tool for characterizing drug release from a transdermal system and has been shown, in some cases, to provide a correlation with biologic response. This test has been shown to be sensitive to skin variability which differs between anatomical sites within an individual and from individual to individual. Therefore, a good experimental design would require an adequate number of replicates (taken from a single piece/sample of skin) and should include a test to evaluate the integrity of the skin sample. Additionally, for each drug product, the in vitro permeation system should be validated to provide both intra-day and inter-day (which may be confounded with inter-subject skin) variability. Such a validation should provide a minimum of 12 replicates during each of 6 days. Variability caused by differences in donor skin are best characterized by running a “reference formulation” head-to-head with the test formulation.