Abstract. Sárközy generalized a theorem of Erdös and Fuchs by considering sums of $k = 2$ members of $k = 2$ given “near” sequences. The aim of this paper is to extend this result for $k > 2$. We distinguish two cases according to the parity of k.

1. Introduction

Let $k \geq 2$ be a fixed integer and let $A^{(j)} = \{a^{(j)}_1, a^{(j)}_2, \ldots\}$ ($j = 1, \ldots, k$) be infinite sequences of integers such that $0 \leq a^{(j)}_1 \leq a^{(j)}_2 \leq \ldots$ ($j = 1, \ldots, k$). If n is a non-negative integer, let $r_k(n)$ denote the number of solutions of

$$a^{(1)}_{i_1} + a^{(2)}_{i_2} + \ldots + a^{(k)}_{i_k} \leq n, \quad a^{(j)}_{i_j} \in A^{(j)} \quad (j = 1, \ldots, k).$$

Erdös and Fuchs [1] showed that if $c > 0$ then, for $k = 2$, $A^{(1)} = A^{(2)}$,

$$r_2(n) = cn + o(n^{1/4} \log^{-1/2} n)$$

cannot hold.

Sárközy [5] proved that if $c > 0$ and the sequences $A^{(1)}$ and $A^{(2)}$ are such as above and

$$a^{(2)}_i - a^{(1)}_i = o\left(\left(a^{(1)}_i \right)^{1/2} \log^{-1} a^{(1)}_i \right),$$

then (1) cannot hold. (A simple example shows that a condition of type (2) is necessary: Let $A^{(j)} = \left\{ \sum_1^k \varepsilon_i 2^{k+j} \right\}$, where $\varepsilon_i = 0$ or 1 for $j = 1, \ldots, k$. Then $r_k(n) = n + 1$, thus $\lim_{n \to \infty} \frac{r_k(n)}{n} = \frac{1}{1 - O(1)}$.)

The object of this paper is to extend this result. We distinguish two cases according to the parity of k. The error term in our theorems is of smaller order of magnitude in the case when k is odd (the difference between the

Key words and phrases: additive number theory, general sequences, approximation of the representation function.

1991 AMS Subject Classification: 11B34.
error terms in these cases is only the exponent of $\log n$, if the main term is cn. We also investigate the case when cn is replaced by $\sum_{b=1}^{s} c_{b} n^{\beta_{b}}$.

Note that our result is weaker than some known results for $A^{(1)} \equiv \ldots \equiv A^{(k)}$. Jurkat [4] showed in this case that if k even, $0 < \beta \leq 1$ and $G(n) \sim cn^{\beta}$, then

$$r_{k}(n) = G(n) + o(n^{\beta/A})$$

cannot hold. Hayashi [2] proved that if $0 < \beta < 1$, $A^{(1)} \equiv A^{(2)} \equiv \ldots \equiv A^{(k)}$ and $G(n) - 2G(n-1) + G(n-2) \leq 0$ for all sufficiently large n, then for any $\varepsilon > 0$

$$r_{k}(n) = G(n) + o(n^{B-\varepsilon}),$$

where $B = \beta(1 - \beta)(1 - 1/k)/(1 - \beta + \beta/k)$, cannot hold. This improved Jurkat’s result if $\beta < \frac{3k-4}{3k-2}$. Let β_{b} and c_{b} $(b = 1, \ldots, s)$ be real numbers satisfying $\beta_{1} > \beta_{2} > \ldots > \beta_{s} \geq 0$ and $c_{1} > 0$. Hayashi [3] showed for $A^{(1)} \equiv \ldots \equiv A^{(k)}$ (and replaced $\sum_{b=1}^{s} c_{b} n^{\beta_{b}}$ by more general functions) that if $\frac{1}{2} < \beta_{1} < \frac{k}{2}$ then

$$(3) \quad r_{k}(n) = \sum_{b=1}^{s} c_{b} n^{\beta_{b}} + o(n^{\beta_{1}/2-1/A})$$

cannot hold.

2. The two main theorems

Theorem 1. Let $k \geq 2$ be a fixed even integer and let $A^{(j)} = \{a_{1}^{(j)}, a_{2}^{(j)}, \ldots\}$ $(j = 1, \ldots, k)$ be infinite sequences of integers such that $0 \leq a_{1}^{(j)} \leq a_{2}^{(j)} \leq \ldots \leq \ldots$ $(j = 1, \ldots, k)$. Let β_{j} and c_{j} $(j = 1, \ldots, s)$ be real numbers satisfying $\beta_{1} > \beta_{2} > \ldots > \beta_{s} \geq 0$ and $c_{1} > 0$.

(i) If $\frac{1}{2} < \beta_{1} < 1$ and

$$(4) \quad a_{i}^{(j+k/2)} - a_{i}^{(j)} = o\left(\left(\min\left(a_{1}^{(j)}, a_{2}^{(j+k/2)}\right)\right)^{1/2}\right) \quad \text{for} \quad j = 1, \ldots, \frac{k}{2},$$

then (3) cannot hold.

Acta Mathematica Hungarica 92, 2001