ON NONCOMPACT MINIMAL SETS OF THE GEODESIC FLOW

F. DAL'BO and A. N. STARKOV

ABSTRACT. We study nontrivial (i.e., containing more than one orbit) minimal sets of the geodesic flow on $\Gamma \backslash T^1\mathbb{H}^2$, where Γ is a nonelementary Fuchsian group. It is not difficult to prove that nontrivial compact minimal sets always exist. We establish the existence of nontrivial noncompact minimal sets in two cases: (1) Γ is a Schottky group of special kind generated by infinitely many hyperbolic elements, (2) Γ contains a parabolic element (in particular, $\Gamma = \text{PSL}(2,\mathbb{Z})$). This is done by geometric coding of geodesic orbits and constructing a minimal set for symbolic dynamics with infinite alphabet.

INTRODUCTION

Let \mathbb{H}^2 be the upper half-plane $\{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ with the boundary $\partial\mathbb{H}^2 = \mathbb{R} \cup \{ \infty \}$. The group $G = \text{PSL}(2,\mathbb{R})$ acts on \mathbb{H}^2 by linear-fractional transformations and is the group of all orientation-preserving isometries of \mathbb{H}^2. Let Γ be a Fuchsian group, i.e., a discrete subgroup of G. Then the space $\Gamma \backslash T^1\mathbb{H}^2 \simeq \Gamma \backslash G$ is the unit tangent bundle over the surface $M = \Gamma \backslash \mathbb{H}^2$ of constant negative curvature.

We study minimal sets of the geodesic flow $(\Gamma \backslash T^1\mathbb{H}^2, g_t)$, i.e., closed $g_\mathbb{R}$-invariant subsets of $\Gamma \backslash T^1\mathbb{H}^2$ that do not contain nonempty proper closed $g_\mathbb{R}$-invariant subsets. Trivial examples of such sets are given by periodic orbits and orbits that go to infinity in both directions. Periodic orbits exist for any nonelementary Fuchsian group Γ. In turn, closed noncompact orbits always exist unless Γ is a cocompact lattice in G (i.e., M is compact). The first example of a nontrivial compact minimal set was given by Morse [7] in the 1920s. This was done by coding geodesic orbits and constructing a

2000 Mathematics Subject Classification. 20H10, 37B10, 37D40.

Key words and phrases. Fuchsian group, geodesic flow, symbolic dynamics, minimal set.

The second named author was partially supported by the Russian Foundation for Basic Research, grant No. 01-01-00067, and by the Leading Scientific School Grant, No. 00-15-96107.
nontrivial minimal set for symbolic dynamics with the alphabet \(A = \{0, 1\}\) (see [6] for more details).

It is not difficult to prove that a nontrivial compact minimal set exists for any nonelementary Fuchsian group \(\Gamma\); see Lemma 3.3.

The existence of nontrivial noncompact minimal sets for the geodesic flow remained an open problem. This is in contrast to examples of such a minimal set for the horocycle flow \(\{h_s\}\) on \(\Gamma \backslash T^1 \mathbb{H}^2\). More precisely, if \(\Gamma\) is a convex-cocompact Fuchsian group which is not a lattice then the nonwandering set\(^1\) \(\Omega^+\) of the horocycle flow is noncompact, \(h_R\)-minimal, and \(g_R\)-invariant (hence nontrivial); see [8] for details.

Our study of minimal sets is partially motivated by a “classification” of minimal sets into 4 classes given in [9] for one-parameter homogeneous flows \((\Gamma \backslash G, g_t)\) on the homogeneous space \(\Gamma \backslash G\) of arbitrary Lie group \(G\). In connection with this result, it was not clear whether all these 4 classes occur for the geodesic flow on the modular surface. More precisely, in the classical case \(\Gamma = \text{PSL}(2, \mathbb{Z})\) it was not known whether there exist nontrivial noncompact minimal sets for the geodesic flow.

We formulate the following

Conjecture. Nontrivial noncompact minimal sets of the geodesic flow on \(\Gamma \backslash T^1 \mathbb{H}^2\) exist if and only if \(\Gamma\) is not a convex-cocompact Fuchsian group.

Note that nontrivial minimal sets are contained in the nonwandering subset \(\Omega \subset \Gamma \backslash T^1 \mathbb{H}^2\), and \(\Omega\) is compact if and only if \(\Gamma\) is convex-cocompact. Hence the necessity part of the conjecture is clear. We support the conjecture in the opposite direction by studying the following two classes of Fuchsian groups:

1. \(\Gamma\) is a Schottky group obtained by taking infinitely many disjoint semidisks in \(\mathbb{H}^2\) which accumulate to a single point in \(\partial \mathbb{H}^2\), and pairing them by hyperbolic isometries. Note that a detailed study of geodesic trajectories in this case was given in [5].

2. \(\Gamma\) contains a parabolic element (this includes, in particular, the modular group \(\text{PSL}(2, \mathbb{Z})\)). This case reduces to the situation where \(\Gamma\) is a Schottky group generated by one hyperbolic element \(h\) and one parabolic element \(p\) (see Sec. 4).

Theorem. If \(\Gamma\) is a Fuchsian group as in the cases (1)–(2), then there exists a nontrivial noncompact minimal set for the geodesic flow on \(\Gamma \backslash T^1 \mathbb{H}^2\).

\(^1\)The nonwandering subset \(\Omega\) for a continuous flow \(\phi_t\) on a topological space \(X\) consists of all points \(x \in X\) such that given any neighborhood \(O(x) \subset X\) there exists a sequence \(t_k \to \infty\) such that \(\phi_{t_k} O(x) \cap O(x) \neq \emptyset\) for all \(k\). Clearly, \(\Omega\) is a closed invariant subset of \(X\), and all orbits outside \(\Omega\) are locally closed.