The Implementation of the Fast Track Program: An Example of a Large-Scale Prevention Science Efficacy Trial

The Conduct Problems Prevention Research Group

Received December 13, 2000; revision received July 9, 2001; accepted July 12, 2001

In 1990, the Fast Track Project was initiated to evaluate the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders in four demographically diverse American communities (Conduct Problems Prevention Research Group [CPPRG], 1992). Representing a prevention science approach toward community-based preventive intervention, the Fast Track intervention design was based upon the available data base elucidating the epidemiology of risk for conduct disorder and suggesting key causal developmental influences (R. P. Weissberg & M. T. Greenberg, 1998). Critical questions about this approach to prevention center around the extent to which such a science-based program can be effective at (1) engaging community members and stakeholders, (2) maintaining intervention fidelity while responding appropriately to the local norms and needs of communities that vary widely in their demographic and cultural/ethnic composition, and (3) maintaining community engagement in the long-term to support effective and sustainable intervention dissemination. This paper discusses these issues, providing examples from the Fast Track project to illustrate the process of program implementation and the evidence available regarding the success of this science-based program at engaging communities in sustainable and effective ways as partners in prevention programming.

KEY WORDS: conduct-problems; implementation; prevention.

Prevention science begins with the assumption that effective prevention efforts will target risk and protective factors identified by developmental theory and research as causally associated with the emergence and course of a disorder (Coie et al., 1993; Institute of Medicine, 1994). The prevention of conduct disorder is well-suited to a prevention science approach toward community-based preventive intervention, because the critical elements needed to support the application of this model exist (Weissberg & Greenberg, 1998). That is, a rich prospective data base has elucidated the epidemiology of risk for conduct disorder, and identified causal processes linking individual, family, school, and neighborhood characteristics to risk and protection (Loeber et al., 1993; Patterson, Capaldi, & Bank, 1991). In addition, several promising intervention strategies have been developed, demonstrating evidence of effectiveness in short-term trials targeting single risk and protective factors associated with the development of conduct disorder (Kazdin & Weisz, 1998).

Yet, despite evidence that child-conduct problems can be reduced in short-term clinical trials, only one Canadian study to date suggests that conduct disorder can be prevented effectively in longer-term trials (Kazdin, 1987; Tremblay, Masse, Pagani, & Vitaro, 1996). In addition, processes of implementation and the impact of programs preventing conduct problems have not yet been examined in communities that vary widely in terms of their demographic characteristics and cultural heritage. Thus, one critical “next step” in this field was the implementation and evaluation of a large, multicomponent, long-term trial.
In 1990, the Fast Track project was initiated to evaluate the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders (Conduct Problems Prevention Research Group [CPPRPG], 1992). The Fast Track program involves a developmentally-based, long-term, comprehensive intervention designed to prevent conduct problems in adolescence, applied in four demographically diverse communities. The evaluation design includes a high-risk control group and a normative comparison group being followed longitudinally at each of the four sites.

The implementation of this large-scale prevention science efficacy trial has faced several key challenges. In previous efforts, the prevention science approach has been criticized for generating short-term programs that are not ecologically valid or sustainable (Weissberg & Greenberg, 1998). Fast Track was designed to be a long-term, multifaceted community-based prevention program, which could be embedded within existing community support structures. As such, it represented a test case, illustrating the challenges facing a prevention science approach when taken to the level of a large-scale efficacy trial. Central challenges included: (1) the engagement of community members and stakeholders; (2) the maintenance of intervention fidelity balanced with the flexible adaptation to local norms and needs; and (3) the long-term retention of participants, maintenance of community engagement, and creation of a foundation for sustainability.

Community psychologists have suggested that the involvement of local community members as central participants in the design of prevention may be critical to the long-term success of the programs, as such involvement fosters better understanding of the intervention goals, greater commitment to high-quality implementation, and more appropriate adaptation of programs (Connell, Kubisch, Schorr, & Weiss, 1995). Of necessity, the prevention science approach involves some “top-down” planning, as research plays a central role in determining the selection of targeted risk and protective factors and intervention strategies. Hence, a critical challenge facing Fast Track involved attaining the engagement of community members and key stakeholders given that intervention planning occurred with “top-down” direction, with researchers playing a central role in the design of the prevention program. That is, Fast Track was committed to a theoretical model that prespecified the desired change targets, change agents, and change methods, and, hence, faced the challenge of engaging community members around this particular prevention model.

A second concern raised regarding the prevention science approach is whether programs based on controlled empirical trials can have the flexibility in form and function needed for ecological validity (Dumas, 1989). That is, the concern exists whether university-developed programs based on empirical linkages regarding risk and outcomes can offer sufficient flexibility to adapt to varying contexts and communities—adaptation which may be crucial to the effective implementation and evaluation of prevention services (Elias & Branden, 1988). The issue is that, although experimental research may provide useful intervention materials and strategies, contextual factors may affect the motivation of community members, as well as the effectiveness of different prevention strategies, which may be influenced by different ecologies (Dumas, 1989). The challenge to Fast Track, then, was to deliver a prevention program that maintains fidelity regarding the critical change targets and processes, but offers flexibility for local adaptation in implementation.

Finally, prevention science approaches are often time-limited, lasting through the course of a short-term trial, but not beyond (Weissberg, 1995). The short-term nature of many prevention science efforts raises questions regarding the feasibility of making sustainable changes with programs developed “outside” the community, and whether such programming can create systemic changes in schools or community systems to support longer-term prevention efforts. The Fast Track program involves a 10-year span of prevention activities, making the completion of the trial, itself, a long-term engagement with schools and communities. The challenge was to retain the interest and active engagement of families, youth, and schools over this sustained period, as well as to build a foundation of support for the continuation of prevention efforts following the end of the trial.

In describing the tenets of the prevention science approach to prevention, Weissberg and Greenberg (1998, p. 483) wrote

The RD&D [Research, Design, and Development] and IOM’s prevention research cycle both assume that there is a rational sequence—research, development, packaging and dissemination—for evolving and applying a new intervention. They also assume that there is a rational consumer who accepts and adopts the innovation. It is assumed that programs are effective because they incorporate the most recent findings from theory and research and that they have been through systematic development and field-testing. The fact that most of these programs are never used on a wide-spread basis illustrates the danger in not understanding more about the user end of the RD&D continuum.

Fast Track represents one of the first attempts to take a prevention science approach to the next step, by creating a science-based intervention trial that includes multiple levels (universal and indicated prevention components) and multiple stakeholders within a community.