POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR SECOND-ORDER SINGULAR NONLINEAR
DIFFERENTIAL EQUATIONS

LI Ren-gui(李仁贵), LIU Li-shan(刘立山)
(Department of Mathematics, Qufu Normal University, Qufu 273165, P R China)
(Communicated by ZHANG Shi-sheng)

Abstract: New existence results are presented for the singular second-order nonlinear boundary value problems \(u'' + g(t)f(u) = 0, \ 0 < t < 1, \ au(0) - \beta u'(0) = 0, \ \gamma u(1) + \delta u'(1) = 0 \) under the conditions \(0 \leq f \leq M_1, \ m_1 < f \leq \infty, \ \) where \(f = \lim_{u \to 0} f(u)/u, \ f = \lim_{u \to \infty} f(u)/u, \ f = \lim_{u \to 0} f(u)/u, \ f = \lim_{u \to \infty} f(u)/u, \ g \) may be singular at \(t = 0 \) and/or \(t = 1 \). The proof uses a fixed point theorem in cone theory.

Key words: second-order singular boundary value problems; positive solutions; cone; fixed point

CLC number: O175.8 Document code: A

Introduction

In this paper, we shall consider the following singular boundary value problems (BVP)

\[
\begin{align*}
\label{eq:1}
u'' + g(t)f(u) &= 0, \quad 0 < t < 1, \\
au(0) - \beta u'(0) &= 0, \\
\gamma u(1) + \delta u'(1) &= 0,
\end{align*}
\]

where \(\alpha, \beta, \gamma, \delta \geq 0, \rho := \beta \gamma + \alpha \delta > 0, \ f \in C([0, \infty), [0, \infty)), \ g \) may be singular at \(t = 0 \) and/or \(t = 1 \). This problem arises naturally in the study of radially symmetric solutions of nonlinear elliptic equations, non-Newton fluid theory, reaction-diffusion theory and the turbulent flow of a gas in a porous medium. Relatively more results on such boundary value problems were obtained when \(g \) is continuous on \([0, 1]\), for example, positive solutions of non-singular BVP(1) were presented in [1]. Recently, the existence of positive solutions of BVP(1) has been studied in [2], when \(g \in C((0, 1), [0, \infty)), \ 0 < \int_0^1 G(s, s)g(s)ds < \infty, \) and \(f \) is superlinear, that is, \(f_0 = \lim_{u \to 0} f(u)/u = 0, \ f_\infty = \lim_{u \to \infty} f(u)/u = \infty \) or \(f \) is sublinear, that is, \(f_0 = \infty \) and \(f_\infty = 0. \)

Received date: 2000-01-17; Revised date: 2000-03-03
Foundation item: the National Natural Science Foundation of China (19871048); the National Science Foundation of Shandong Province (Y98A09012)
Biography: LI Ren-gui (1968 -), Lecturer, Master
In this paper, we study the existence of positive solutions of BVP(1) under the more general limited condition and integral condition, in detail, \(0 \leq f_0^+ < M_1, m_1 < f_0^- < M_1, m_1 < f_0^- < \infty \) or \(0 \leq f_0^+ < M_1, m_1 < f_0^- < \infty \) and \(0 < \int_0^1 G(s,s)g(s)ds < \infty \), where \(m_1, M_1 \) will be defined in Section 1.

The existence results obtained in this paper will actually improve and extend the main results in \([1, 2]\).

1 Preliminaries and Lemmas

Let \(E \) be a real Banach space, \(P \) a cone in \(E \), \(P \) reduces the partial order "\(\preceq \)" in \(E \), that is, \(x \preceq y \Longleftrightarrow y - x \in P \). Suppose \(G(t,s) \) is the green function of the following boundary problem

\[
\begin{cases}
 u'' = 0, & 0 < t < 1, \\
 au(0) - \beta u'(0) = 0, & \gamma u(1) + \delta u'(1) = 0,
\end{cases}
\]

(2)

given by

\[
G(t,s) = \begin{cases}
 \frac{1}{\rho} (\gamma + \delta - \gamma t)(\beta + \alpha s), & 0 \leq s \leq t \leq 1, \\
 \frac{1}{\rho} (\gamma + \delta - \gamma s)(\beta + \alpha t), & 0 \leq t \leq s \leq 1.
\end{cases}
\]

It is obvious that

\[
G(t,s) \preceq G(s,s), \quad 0 \leq t, s \leq 1.
\]

(3)

For the sake of convenience, let us list the following some conditions:

(H1) \(f \in C([0, \infty), [0, \infty)) \);

(H2) \(g \in C((0,1), [0, \infty)) \) and \(0 < \int_0^1 G(s,s)g(s)ds < \infty \).

By virtue of \(\int_0^1 G(s,s)g(s)ds > 0 \) and \(g \in C((0,1), [0, \infty)) \), there exists \(t_0 \in (0,1) \) such that \(g(t_0) > 0 \). Obviously, there exist \(a, b \in [0,1], a < b \) such that \(t_0 \in (a, b) \). Let

\[
K = \{ u \in C[0,1] | u(t) \geq 0, \min_{s \in [a,b]} u(t) \geq M \| u \| \},
\]

where

\[
\| u \| = \sup_{t \in [0,1]} | u(t) |, \quad M = \min \left[\frac{\delta + (1 - b)\gamma}{\delta + \gamma}, \frac{ab + \beta}{a + \beta} \right].
\]

Clearly, \(K \) is a cone of \(C[0,1] \) and \(0 < M < 1 \). From (H2), define an operator \(A: C[0,1] \to C[0,1] \) by

\[
Au(t) = \int_0^1 G(t,s)g(s)f(u(s))ds.
\]

By virtue of (3), we have

\[
Au(t) = \int_0^1 G(t,s)g(s)f(u(s))ds \leq \int_0^1 G(s,s)g(s)f(u(s))ds, \quad t \in [0,1].
\]

So,