Stationary Generalization of the Bonnor Magnetic Dipole Solution

V. S. Manko\(^1\) and E. Ruiz\(^2\)

Received October 24, 1996

An exact asymptotically flat 3-parameter solution of the Einstein–Maxwell equations is presented that reduces to the Bonnor magnetic dipole solution in the magnetostatic limit, and to the Tomimatsu–Sato $\delta = 2$ solution in the stationary pure vacuum limit. This solution is the simplest possible one admitting the polynomial representation in the spheroidal coordinates (x, y) and able to describe the exterior field of a magnetized spinning mass. A multipole criterion for the choice of the parameters in the Einstein–Maxwell spacetimes is also formulated.

KEY WORDS: Einstein–Maxwell equations; magnetic dipole; asymptotically flat solution

1. INTRODUCTION

Bonnor was the first to obtain an exact asymptotically flat 2-parameter solution of the Einstein–Maxwell equations appropiate for the description of the exterior field of a massive magnetic dipole [1] by applying his theorem [2] to the Kerr metric [3], and since then it has been a long standing problem to obtain a stationary generalization of this solution. Bonnor’s magnetostatic metric was later generalized by Kramer and Neugebauer [4] to include an additional parameter of charge, the resulting metric being already a stationary one, but without a stationary pure vacuum limit.

\(^1\) Departamento de Física, CINVESTAV del IPN, A.P. 14-740, 07000 México D.F., Mexico. E-mail: vsmanko@fis.cinvestav

\(^2\) Área de Física Teórica, Universidad de Salamanca, 37008 Salamanca, Spain. E-mail: eruiz@ugu.usal.es
Since the problem of introducing an independent parameter of angular momentum into the Bonnor metric is equivalent to finding a magnetic generalization of the Tomimatsu–Sato $\delta = 2$ solution [5], it is worth mentioning that the search for such an electrovac solution was pioneered by Kinnersley who outlined a procedure for constructing a nine-parameter stationary electrovac metric possessing a magnetic dipole parameter [6]. Kinnersley’s idea was later realized in [7], where a rational function solution was obtained that could be interpreted in its special case as a magnetized superextreme Tomimatsu–Sato $\delta = 2$ solution. The fact that the latter solution was not applicable to the more interesting subextreme case possibly explains why the authors of [7] restricted their consideration to the derivation of the Ernst complex potentials [8] defining the solution, not even being fully confident in the physical interpretation of the parameters associated with the electromagnetic field.

The aim of our paper is to present a stationary generalization of the Bonnor metric in a simple form that would be equally applicable both to the sub- and superextreme cases of the magnetized spinning sources.

2. THE ERNST COMPLEX POTENTIALS AND METRIC FUNCTIONS

The reported solution has been obtained with the aid of Sibgatullin’s integral method [9] applied to the axis data of the form

\[
\begin{align*}
\zeta(\rho = 0, z) &\equiv e(z) = \frac{z^2 - 2(m + ia)z + m^2 - a^2 - \epsilon^2}{z^2 + 2(m - ia)z + m^2 - a^2 - \epsilon^2}, \\
\Phi(\rho = 0, z) &\equiv f(z) = \frac{2ic' z^2 + 2(m - ia)z + m^2 - a^2 - \epsilon^2}{z^2 + 2(m - ia)z + m^2 - a^2 - \epsilon^2}, \\
c^2 &\equiv \frac{\epsilon^2}{m^2 - a^2},
\end{align*}
\]

(1)

where ζ and Φ stand for the Ernst complex potentials, ρ and z are the Weyl–Papapetrou cylindrical coordinates, and m, a, c' are arbitrary real constants associated respectively with the total mass, angular momentum and magnetic dipole moment of the source. When $a = 0$, one obtains from (1) the axis data of the Bonnor solution; on the other hand, with $c' = 0$, one recovers from (1) the potential $e(z)$ of the Tomimatsu–Sato $\delta = 2$ solution representing both the sub- and superextreme cases. The parameters in (1) are chosen in such a way that the algebraic equation

\[
e(z) + \bar{e}(z) + 2f(z)\bar{f}(z) = 0
\]

(2)