ABSTRACT. In his recent book, *Knowledge in a Social World*, Alvin Goldman claims to have established that if a reasoner starts with accurate estimates of the reliability of new evidence and *conditionalizes* on this evidence, then this reasoner is *objectively likely* to end up closer to the truth. In this paper, I argue that Goldman’s result is not nearly as philosophically significant as he would have us believe. First, accurately estimating the reliability of evidence – in the sense that Goldman requires – is not quite as easy as it might sound. Second, being objectively likely to end up closer to the truth – in the sense that Goldman establishes – is not quite as valuable as it might sound.

1. INTRODUCTION

Epistemologists are commonly interested in identifying inference procedures that have good epistemic properties. Deductive inference, for instance, has a particularly valuable epistemic property. Namely, if you start with true premises and you reason deductively, you are guaranteed to reach true conclusions. Probabilistic inference, however, by its very nature cannot provide such a guarantee.

Even so, Alvin Goldman claims to have established that a particular form of probabilistic inference has an analogous property. In particular, he claims that if you start with accurate estimates of the reliability of new evidence and you *conditionalize* on this evidence, you are objectively likely to end up closer to the truth. Or, as Goldman puts it in *Knowledge in a Social World*, “use of Bayes' Theorem will not always raise the user’s degree of knowledge; but, under conditions to be specified, it is *objectively likely* to raise his degree of knowledge. This is a significant property, which should certainly not be belittled” (p. 115). Indeed, if Goldman has really established what he claims to have established, it would be an extremely significant philosophical result.
Goldman’s overall project in *Knowledge in a Social World* is to identify practices that have good epistemic consequences. This project is analogous to that of a moral consequentialist who wants to identify practices that have good moral consequences (p. 87). And “Bayesian reasoning with accurate likelihoods” (p. 122) is understandably Goldman’s prime example of a practice that has good epistemic consequences. For example, he discusses its implications for the evaluation of scientific evidence (pp. 260–263), evidence presented in a court of law (pp. 292–295), and testimonial evidence in general (pp. 115–125).

In order to establish his claim about this particular form of probabilistic inference, Goldman and Moshe Shaked have proven a new mathematical theorem (p. 121). In section 2 of this paper, I explain this theorem using the framework of decision theory. In the sections that follow, however, I argue that Goldman seriously overstates the philosophical significance of this theorem. In particular, I discuss two reasons why the interest and scope of the Goldman/Shaked theorem are rather limited. First, only rarely will human beings be able to accurately estimate — in the precise sense required by the theorem — the reliability of evidence. Second, it is not always epistemically valuable to be objectively likely to end up closer to the truth — in the precise sense established by the theorem.

As I indicate below, the Goldman/Shaked theorem does have some interesting philosophical implications, but it simply will not bear the full philosophical weight that Goldman wants to put on it. However, the interest of the present paper extends beyond the status of Goldman’s claim about this particular form of probabilistic inference. An analysis of Goldman’s claim illustrates some potential pitfalls of epistemic consequentialism in general that should be avoided.

2. DECISION THEORETIC EPISTEMOLOGY

Let \(h \) be the proposition that Floyd Thursby murdered Miles Archer (see Hammett, 1934). And, suppose that Sam Spade wants to determine whether or not \(h \) is true. Or, to use Goldman’s terminology, suppose that Spade wants to increase his “degree of knowledge” with respect to \(h \). In other words, Spade wants to raise his