The Linnik conjecture is proved in the mean-square version with respect to the main parameter, namely, the length of the Linnik sum. Bibliography: 9 titles.

INTRODUCTION

In 1962, at the International Mathematical Congress in Stockholm Yu. V. Linnik (see [1]) advanced the conjecture on the double square reduction for the Kloosterman sums \(S(m, n; c) \) [2] in summing them over moduli \(c \geq 1 \):

\[
l_{m,n}(x) = \sum_{1 \leq c \leq x} \frac{S(m, n; c)}{c} \ll x^\varepsilon,
\]

(0.1)

where \(x \geq 1 \) is an increasing parameter; \(m \geq 1 \) and \(n \geq 1 \) are integer fixed parameters common for all Kloosterman sums; \(\varepsilon > 0 \) is an arbitrarily small but fixed number. The constant in estimate (0.1) depends on \(m \) and \(n \).

With the help of spectral techniques, in [5, 7] estimate (0.1) is obtained for \(\varepsilon = \frac{1}{6} \), which confirms the interference of the Kloosterman sums over the moduli, because the following estimate is trivial:

\[
l_{m,n}(x) \ll x^{1/2 + \varepsilon},
\]

which immediately follows from A. Weil’s estimate [3] for Kloosterman sums:

\[
|S(m, n; c)| \leq \sqrt{c} \cdot \min \left[\sqrt{\frac{c}{(m, c)}}, \sqrt{\frac{c}{(n, c)}} \right].
\]

(0.2)

If we assume that the parameters \(m \) and \(n \) are fixed and \(c \) is increasing, then (0.2) can be written in a simpler form:

\[
S(m, n; c) \ll c^{1/2 + \varepsilon}.
\]

From this estimate it is seen that the Linnik conjecture suggests the second square reduction for the sum \(l_{n,n}(x) \) of Kloosterman sums over moduli \(c \leq x \).

In fact, estimate (0.1) carries two estimates: an analytic one with respect to the length \(x \) of the Linnik sum and an arithmetic one with respect to the parameters \(m \) and \(n \). In practice, these parameters are most often not fixed and increase with the length \(x \) of the interval. In order to clarify the form of estimate (0.1) with respect to three parameters \((m, n, x) \), we use the following identity for Kloosterman sums (see [5]):

\[
S(m, n; c) = \sum_{\Delta \mid (m, n, c)} \Delta S(1, \frac{m \cdot n}{\Delta^2}, \frac{c}{\Delta}).
\]

(0.3)

Substituting (0.3) into the definition of the Linnik sum \(l_{m,n}(x) \) in (0.1), we obtain the identity

\[
l_{m,n}(x) = \sum_{\Delta \mid (m, n)} l_{1, \frac{m \cdot n}{\Delta^2}} \left(\frac{x}{\Delta} \right).
\]

(0.4)

From this identity, it follows that, without loss of generality of estimate (0.1), we may restrict ourselves to the Linnik sum with only one parameter:

\[
l_{1,m}(x) = \sum_{1 \leq c \leq x} \frac{S(1, m; c)}{c}.
\]

(0.5)

For this sum, the Linnik conjecture (0.1) can be written in the absolute form
\[l_{1,m}(x) \ll (m \cdot x)^{\varepsilon}, \quad (0.6) \]
in the sense that the constant in (0.6) depends only on the parameter \(\varepsilon > 0 \). In this case, the Weil estimate (0.2) is simplified:
\[|S(1, m; c)| \leq \sqrt{c} \cdot \tau(c). \quad (0.7) \]
If we substitute estimate (0.7) into (0.3), then the general Weil estimate (0.2) is also simplified:
\[|S(m, n; c)| \leq \sqrt{c} \sum_{\Delta | (m, n') \neq e} \sqrt{\Delta} \cdot \tau \left(\frac{c}{\Delta} \right). \quad (0.2^a) \]
In the present paper, we prove the mean-square Linnik conjecture for sum (0.5):
\[\int_{\mathbf{Z}}^{N} |l_{1,m}(x)|^2 dx \ll N^{1+\varepsilon}. \quad (0.8) \]
Moreover, the constant in estimate (0.8) does not depend on \(m \), provided that
\[m \ll N^2. \quad (0.9) \]
We also obtain an arithmetic version of estimate (0.8) with respect to the parameter \(m \):
\[\sum_{m \leq M} |l_{1,m}(x)|^2 \ll M^{1+\varepsilon}. \quad (0.10) \]
The constant in estimate (0.10) does not depend on \(x \) if the following condition holds:
\[x \ll M \ll x^2. \quad (0.11) \]
One may combine estimates (0.8) and (0.10) if one considers the normed Linnik sum of the form
\[l_{1,m}^*(x) = \sum_{c \leq 2 \sqrt{m \cdot x}} \frac{S(1, m; c)}{c}. \quad (0.12) \]
For the combined mean of this sum, we have
\[\sum_{m \leq M} \int_{\mathbf{Z}}^{N} |l_{1,m}^*(x)|^2 dx \ll (M \cdot N)^{1+\varepsilon}. \quad (0.13) \]
The constant in estimate (0.13) depends only on \(\varepsilon > 0 \) if the condition
\[M \ll N^2 \quad (0.14) \]
holds.

1. Preliminary information

In relation to the Linnik conjecture [1], in [4] A. Selberg introduced the \(\mathcal{Z} \)-function
\[Z_{m,n}(S) = \sum_{c=1}^{\infty} \frac{S(m, n; c)}{c^{2s}}, \quad \text{Re } s > \frac{3}{4}, \quad (1.1) \]
and obtained the following spectral expansion for this function:
\[Z_{m,n}(s) = (Z_{m,n}^{\text{con}} + Z_{m,n}^{\text{cusp}} + Z_{m,n}^{\text{disc}})(s). \quad (1.2) \]