Frege's Philosophy of Mathematics is a collection of eighteen essays by well-known scholars. It sets out to address three main developments in recent work on Frege's philosophy of mathematics: the emerging interest in the intellectual background of Frege's logicism; the reevaluation of the mathematical content of Frege's Basic Laws of Arithmetic; and the rediscovery of what is termed "Frege's theorem" that, in the context of second-order logic, Hume's principle (i.e., the number of Fs = the number of Gs if and only if the Fs and the Gs are in one-to-one correspondence) implies the infinity of the natural numbers. In his introduction, editor Demopoulos calls the "rediscovery of Frege's theorem" a major factor underlying the current, renewed interest in Frege's philosophy of mathematics. It is in fact the central theme of the book.

All but one of the papers anthologized date from the 1980s and 1990s. A major principle governing their selection was evidence of "a sympathetic, if not uncritical, reconstruction, evaluation, or extension of one or another facet of Frege's thought". Worthwhile papers not satisfying that criterion were not included in the collection (p. x). The papers are interrelated and their authors very frequently cite and thank one another in a friendly way.

The idea for the collection originated with Michael Dummett, whom Demopoulos considers to have set an intellectual standard to which most philosophers of his generation aspire. Given this, it is worthwhile to bear in mind that, while calling Frege "the best philosopher of mathematics" in the preface to Frege: Philosophy of Mathematics, Dummett opined that the reason why Frege's work in the philosophy of mathematics has been "dismissed as a total failure" is probably that his work "does not prompt any further line of investigation in mathematical logic" and "does not even appear to promise a hopeful basis for a sustainable general philosophy.
of mathematics”. The “evidences of the blindness and lack of generosity which were such marked features of Frege’s work after 1891 combine”, wrote Dummett, “with his great blunder in falling into the contradiction to suggest that he cannot have much to teach us” (pp. xi–xiii).

The book is divided into three parts. In their different ways, the articles of Part One aim to situate Frege’s efforts within the context of 19th century efforts to rigorize analysis and to shield it from the deleterious effects of Kant’s ideas about intuitions and the synthetic a priori status of mathematical propositions. First, Alberto Coffa aims to embed logicism in a broader movement whose enemy was Kant, whose goal was the elimination of pure intuition from scientific knowledge and whose strategy was the creation of semantics as an independent discipline. This movement included the rigorization of the calculus, Frege’s and Russell’s theories of arithmetic, and Poincaré’s and Hilbert’s geometric conventionalism, which Coffa invites readers to look at as stages in a complex process that began with Bolzano.

Bolzano, writes Coffa, was the first to see that Kant had been wrong to think that all conceptual information available in a judgment was to be used up in the grounding of analytic judgments and that one was to appeal to intuition to ground the rest. Bolzano was thus prepared to “explore the possibility that all of our pure a priori knowledge – including synthetic a priori knowledge – could be stated and grounded on concepts alone” (pp. 34–35). He and his followers, maintains Coffa, maneuvered pure intuition out of analysis and into arithmetic where Frege’s gigantic fly swatter finally came to squash it out. Poincaré and Hilbert came to take up the cause of geometry. Carnap finally saw what Bolzano and Frege almost saw, namely that logical truth is truth in virtue of logical concepts. The essay closes with the words: “And then came Quine” (p. 40).

The following paper by Paul Benacerraf should be an invitation to analytic philosophers to do some thorough soul searching to determine exactly how and why they ever came to believe the views he contests. In particular, he challenges the thesis that 20th century logicians were correct to consider Frege’s logicism to be a philosophical view closely allied with empiricism. Frege’s view, Benacerraf maintains, “was a much more intriguing one and in its spirit directly antithetical to the philosophical motivations of his twentieth-century ‘followers’ ” (p. 48). For Benacerraf, _Foundations_ is first and foremost a work of mathematics and not, as he had been taught, a work in the Kantian/empiricist tradition. For him Frege was no empiricist, and establishing the analyticity of arithmetical judgments was not his way of defending empiricism against Kantian attack. If Frege was a logicist, Benacerraf concludes, then he was both the first and last one.